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Executive Summary 
 

72BFor the future of biocomputing era, the machine learning platform for structure-based drug design 

is very crucial. The world is in urgent need to harvest big data for a better understanding of 

controlling molecular function. The ability to dissect drug binding affinity from protein structures 

can enable next generation molecular design. Our MANORAA server allows international 

collaboration for the advancement of scientific discovery related to healthcare and well-being. 

73BMANORAA project is an augmented intelligent drug design platform. It has been built from 

partnership among various Mahidol University's departments in collaboration with the University 

of Cambridge, UK. The aim is to offer insights into information harvested from many biomolecular 

web resources. By this digital transformation, we allow a better understanding of molecular basis 

from big picture and in-depth perspectives to accelerate laborious experiments with data science. 

We also support open science by depositing 180 ligand data sets to public repository. 

MANORAA allows in-depth analysis of inter-residue distances in protein pockets. It merges the 

interface of physical, digital, and biological world through drug discovery research. Unlike most 

machine learning studies, we provided careful experimental prove of our findings that certain 

distances and hence their mutation can result in improved binding affinity. By measuring molecular 

distance and interaction at angstrom level, the users can decipher complex features of a target 

molecule by just a few mouse clicks. This server allows agile queries and hence it is built as a 

webserver accessible programmatically. Due to recent data privacy regulations, we are unable to 

collect user's information. However, we hope to allow user's login to allow for voluntary data 

submission and scientific networking.  

74BThis timely research has enabled pandemic preparedness. For instance, our MproCovid.com 

webserver powered by MANORAA is devoted to understanding the actives site of SARS-CoV-2 

Main Proteases. The engine is available for analysis of structures for the whole Protein Data Bank. 

It may enable the advancement of precision medicine by paving the way for tailor-made molecular 

design. The proteins in the platform include of targets for infectious diseases, non-communicable 

diseases, and many more. 

75BWe have also aimed to train younger generations scientists to become high-skilled workforce by 

providing data foundation for bioscience research. During the last year, Manoraa was taught in 

Metaverse for the MBMG 601 (Current Topics in Molecular Biology) course and obtained full 

scores evaluation (5/5) for all categories. This centralized platform has opened door for online 

education, where learners’ experiences integrate seamlessly into the digital world. 

76BThe MANORAA algorithms has been published in “Structure” and was ranked as “Most Read” at 

Cell Press website for the first 5 weeks. Our YouTube video, which introduces the MANORAA 

project, has gained the attention from world experts in the field of drug discovery (Linkedin). There 

are invitations for presentations from the great pioneers of structural bioinformatics & drug design 

(see Appendix), which affirmed that this server brings values to the molecular design community. 

77BIn conclusion, this multidisciplinary machine learning platform can guide molecular design 

technology and can strengthen human capabilities to understand complex biological world through 

our machine learning algorithms. If the backend databases grow larger, it can act as a biomolecular 

data hub. The biomolecular design process can be cheaper, faster, and more effective. 
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Abstract 
 

78BThe MANORAA platform uses structure-based approaches to 

provide information on drug design, originally derived from 

mapping tens of thousands of amino acids on a grid. In-depth 

analyses of the pockets, frequently occurring atoms, influential 

distance, and active site boundaries, are used for the analysis of 

active sites. The algorithms derived provide model equations that 

can predict whether changes in distances, such as contraction or 

expansion, will result in improved binding affinity. The algorithm 

is confirmed using kinetic studies of DHFR, together with two 

DHFR-TS crystal structures. Empirical analyses of 881 crystal 

structures involving 180 ligands are used to interpret protein-

ligand binding affinities. MANORAA links to major biological 

databases for web-based analysis of drug design. The frequency 

of atoms inside the main protease structures, including those from 

SARS-CoV-2 shows how the rigid part of the ligand can be used 

as a probe for molecular design (http://manoraa.org). 

 

 

79BVideo Abstract at Mahidol World 

http://manoraa.org/
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Introduction 
 

80BBig data and machine learning offer exciting opportunities for drug 

discovery (Adeshina et al, 2020; D’Souza et al, 2020; Hochreiter et al, 

2018). Machines are unlikely to replace human intelligence completely in 

the field of drug discovery, since much of the decision making in drug 

discovery will still rely on the intuition of the medicinal chemist. However, 

we can make the procedure more efficient by equipping the human brain 

with easy to use, fast and affordable tools to assist the drug design process. 

During this era of the pandemic, scientists are in urgent need of having a 

centralized and systematic platform to facilitate small molecule drug 

discovery. This type of drug is indispensable as it requires more feasible 

administration and logistics, compared to other more advanced biologics 

for therapeutic use. 

 

0BFigure 1. MANORAA drug-design server scheme. 
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81BNowadays, machines can devise routes for synthesizing almost any 

molecule. The challenge has now shifted towards deciding what molecule 

should be synthesized to optimize binding of inhibitor to target proteins. 

CRISPR-cas9 will allow us to generate any protein in a living cell, so that 

we may be able to adjust the binding affinity, so that it is under the control 

of an inhibitor. Chemical databases such as ChEMBL (Davies et al, 2015) 

and PubChem (Kim et al, 2018) can facilitate the gathering of ligand 

information. However, there is still no obvious way of interpreting 

information on drug-protein interactions to impact society in terms of 

providing new perspectives for the design of new medicines. With the 

amount of data available and recent advances in protein folding (Jumper et 

al, 2021; Tunyasuvunakool et al, 2021), scientists should be able to use 

machine learning, not only to design small molecule ligands, but also to 

determine what mutations should be made to improve the healthcare and 

biotechnology industries. However, there is no centralized system to 

facilitate the design of new ligand that can be shared among scientific 

community. Although, the new methods, such as Deep Learning, have been 

used in computer-aided drug design and discovery with excellent results 

(Nguyen et al, 2019), the drawback lies in the complexity of the calculation 

that makes analysis and interpretation of results very difficult (Ding & 

Zhang, 2021; Lavecchia, 2019). For the field of image recognition, 

understanding the parameters may not be as important as accuracy in 

prediction. However, for drug design, the analysis to determine which part 

of the molecule that makes the ligand bind to a protein tighter would greatly 

affect the next step of design. Machine learning attempts have been made 

for virtual screening by training models using decoys (Adeshina et al., 

2020). However, we have chosen crystal structures as inputs for our study 

as we believe that the far more accurate atomic locations, obtained from 

electron density data, can give more meaningful physical interpretation. 
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Hence, we have devised universal methods to filter distances in the pocket 

that are statistically meaningful for binding from analysis of 180 ligand-

protein data sets. 

82BOur objective is to simplify the analysis of protein-ligand complexes to 

enable modification of their binding and hence their function. With more 

than 140,000 X-ray structures in the Protein Data Bank (PDB) (Velankar 

et al, 2016), we also constructed a pipeline to decipher the information from 

the PDB structural database, ChEMBL (Davies et al., 2015), OpenTargets 

(Carvalho-Silva et al, 2019), KEGGs (Kanehisa & Goto, 2000), SAMUL 

(Gong et al, 2011) as mentioned in the previous release of MANORAA 

(Mapping Analogous Nuclei onto Residue and Affinity) (Tanramluk et al, 

2016). 

83BWith this new release, MANORAA.org has become an augmented 

intelligent drug-design platform, by combining efforts from in-depth 

analysis and the big picture. By the big picture route, our server provides 

the information accumulated by the biological community, by tabulating 

and linking data from major biological databases. This can be used to 

harvest information for drug targets, since each ligand that can bind to the 

protein is likely to affect that target protein in general. Baseline expression 

of drug targets are shown in the form of either protein or RNA expression 

in various target organs via OpenTargets (Carvalho-Silva et al., 2019). The 

user can infer how tightly a drug binds to a protein from BindingMOAD 

(Benson et al, 2008), in order to analyze the molecular interactions between 

the same ligand in different protein structures, so as to gain insights into 

the most likely way to strengthen the binding affinity and avoid off-target 

interaction. Structure-based superposition using ligand atoms from rigid 

fragments provides information on conservation in the pocket, while the 

machine learning algorithm provides information on the variation in the 
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pocket distances that affect the binding affinity. Thus, we can offer a robust 

analysis platform for protein-ligand interaction to help understand the 

selectivity required, not only in conventional structure-guided drug 

discovery, but also in multi-target drug design and molecular design of the 

probe (Frye, 2010; Workman & Collins, 2010).  

84BIn terms of drug design and probe-molecule design, our tool helps to devise 

the rules on which parts of the ligand should be altered and how more atoms 

may be designed to make the chemical compound bind more tightly to the 

target protein. For a more challenging aim, such as multi-target drug 

design, our approach can shed light on the interactions that govern trends 

in binding affinity for a defined set of inhibitors. These aims can be 

accomplished through our method if there is sufficient data available on 

protein-ligand complexes and the associated binding affinity. The cloud 

computing system provided enables machine learning in a centralized 

platform that offers reproducibility of structural analysis, while keeping the 

resulting hotspots of the small molecule structure secret by using 

programmable URL. It allows agile analysis by calculation of the 

influential distances on the fly, based on the customized set of atoms and 

PDB structures provided by users. It also allows visualization of the 

promiscuous parts that are crucial for ligand binding. 

85BOur preliminary studies comprise superposition of tens of thousands of 

amino acid residues and collection of information on the nature and 

occupancy of the surrounding atoms on a grid (Tanramluk, 2005; 

Tanramluk et al, 2009). The results support our idea that by intensifying 

the signal to noise ratio in this manner, we can identify patterns of 

interacting atoms around amino acids side chains. Therefore, we analyze 

large numbers of crystal structures in complex with the same ligand, 

superposing these structures on rigid fragment of the bound ligand.  This 
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will allow dissection of the ensemble of protein atoms surrounding the 

ligand into those that show differences or similarities in the pocket. Then, 

we devise an algorithm to measure distances in all directions within the 

protein pocket and find the trends in the relationship between distances and 

binding affinities.  

Objectives 
 

86B1. To develop a machine learning platform to guide protein and 

ligand design based on inter-residue distances 

87B2. To prove the binding-distance correlation algorithms using  

X-ray crystal structures of Plasmodial falciparum DHFR-TS in complex 

with inhibitors 

88B3. To prove the influence of the distance that relates to binding 

affinity via enzyme kinetics of Staphylococcus aureus DHFR 

89B4. To provide a rough sketch of the shape of Main protease active 

site that may assist the design of SARS-CoV-2 main protease inhibitors 
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Methods 

1. Overview of the web interface 

90BThe MANORAA platform is a starting point for gathering big data and can 

serve researchers in several fields, such as chemical biology, protein 

chemistry, biochemistry, molecular biology and computational biology 

(Figure 1). The user can begin with various information, such as knowledge 

of the chemical compounds or the protein, and use these to discover the 

mechanism of action and drug side effects in organs. The platform can 

provide users with various functions to perform an in-depth analysis at the 

levels of protein-ligand interaction and structural analysis. Functions 

include the retrieval of chemical fragments name and structural data, 

pathway discovery and target discovery, molecular interaction analysis, 

binding and distance correlation. Frequently occurring entities, such as 

atoms or residues that retain their position relative to inhibitor, can be 

viewed on the molecular visualizer via a unique URL, which is also 

programmable to allow repeating analyses from the same user or for 

sharing with colleagues. Searches using the common name of both 

evidenced based drugs and traditional medicine compounds are permitted 

by providing links to PDB 3-letter codes, which is the fastest way to obtain 

big picture panels of each small molecule. These functions help the user to 

start from the chemical fragment of interest and discover the target 

pathways, as well as prospective organ involved in disease progression and 

drug side effects.  This is based on the assumption that the protein structure 

in complex with the ligand is a reliable source of information to indicate 

whether the ligands can bind to this target. Therefore, the website 

comprises all the information that links the relational databases on 

structure, based on unique identification numbers in various bioinformatics 

databases, such as ChEMBL (Davies et al., 2015), PDBe (Velankar et al., 
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2016), OpenTargets (Carvalho-Silva et al., 2019), and KEGG (Kanehisa & 

Goto, 2000). Each protein structure associated with the ligand can be used 

to link to UniProt (The UniProt Consortium, 2020), which can provide the 

amino acid sequence for all these PDB structures, and hence be linked to 

protein expression levels and pathways. UniProt also linked out to Single 

Nucleotide Variant which shows their disease causing SNPs. Other useful 

information will include searching the ligand fragment that affect 

biological pathways (KEGG) in humans, the tissues and organs where 

associated proteins are highly expressed (OpenTarget’s RNA/Protein 

baseline expression level). The UniProt allows linking to OpenTargets 

(Carvalho-Silva et al., 2019) which has Ensembl ID (Howe et al, 2021), so 

they can link the PDB of the protein structure to the normal protein and 

RNA expression levels in various tissues and organs, providing 

information on possible side-effects of drugs. This linking of big data from 

various databases decreases the amount of wet lab and animal testing 

required.  Protein-ligand interactions function is described in the methods, 

results and discussion of our first MANORAA article (Tanramluk et al., 

2016). 

2. Development of structural conservation function 

91BThe structural conservation button sent information consists of ligand 

atoms and protein chains to invoke a Java module. The module was 

developed using the Java 1.6 and BioJava version 4.0, which can superpose 

the structure, binning the conserved atoms and colouring the conservation 

of atoms as colour gradient, before sending the data back to the structure 

visualization panel. Each PDB chains of all the structures was superposed 

onto the template based on the set of input atoms that the user picked. This 

method uses function SVDSuperimposer of BioJava to do atom 

superposition. It accepts input atoms to be used for superposition from the 
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users. The default values were all the heteroatoms, but a more specialized 

focus on rigid fragment atoms is recommended to improve the predictive 

power for flexible ligand. PDB with the lowest affinity value is used as the 

template for superposition. After all the structures were superposed based 

on the ligand atoms, all the amino acid atoms surrounding the ligand atoms 

are put into the bin according to its coordinate x, y, z, and atom types. The 

four-dimensional array was created with bin size equal to 1Å to collect all 

the atoms near the grid. All bins with >50% of structures that have atoms 

fall in were coloured. The numbers of atoms with highest frequencies to 

lowest frequencies were used to normalize the gradient colours from 

yellow to green to blue. The colours were generated by converting the 

numbers of atoms into percentages to input into the Temperature Factor 

column of the PDB file. The bin with the highest number of atoms will 

have a temperature factor equal to 100. All the other bins, which do not 

pass the 50% binning criteria, had their temperature factor set to zero. After 

the temperature factor columns were created, the information for all atoms 

were input as a new file, used to represent the conservation of atoms’ panel 

with the JSmol visualization panel (JavaScript framework).  

3. Development of binding-distance correlation function 

92BAll the user-selected PDB chain codes were used to superpose based on 

ligand’s atom superposition using the function SVDSuperimposer of 

BioJava packages. All conserved atoms and center atoms of amino acid 

residues in the PDB chains are classified according to conserved atom 

types and residue types (Tanramluk et al., 2009). A combined list of 

conserved atom and residue bins were pooled and the residues and atoms 

less populated than the cutoff were discarded. The conserved atom and 

residue bins which are 100% populated were collected. The bin of 

conserved entities was expanded 1 Å at a time to fill the equivalent residue 
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numbers of all selected structures. The algorithm scans for more bins with 

residues from every chain populated until reaching the maximum numbers 

of the bins, which is 10% of the average number of residues from all PDB 

chains. Center atoms from all the bins from each of the selected PDB files 

were used for distance calculations to populate the distance descriptors 

variable. The corresponding binding affinity values were used as 

observable parameters for Partial Least Squares regression (PLS). 

Variables were selected based on VIP (variable importance in the 

projection) values (Chong & Jun, 2005) in multistep filtering until the final 

set, and then the number of components giving lowest mean squared error 

(MSE) was chosen. These will then be used for PLS regression. Python 

3.5.2, NumPy, Pandas and Python’s Scikit-learn packages were used for 

computation in this step. Selected variables were presented with the 

influential distance in colours using NGL Viewer (Rose et al, 2018). If the 

coefficient is negative, the distance is shown in orange. If the coefficient is 

positive, the distance is shown in green. The orange bar means favorable 

in expansion for lower binding affinity (Ki or Kd values) and the green bar 

means favourable in contraction. The in vitro studies of Staphylococcus 

aureus DHFR in complex with trimethoprim were provided to predict the 

distances with improved binding affinities. 

4. Experimental validation via SaDHFR kinetic studies 
 

93BIn order to construct a recombinant plasmid containing wide-type 

SaDHFR, the SaDHFR DNA fragment was PCR-amplified from genomic 

DNA of S. aureus subsp. aureus Rosenbach (ATCC) using specific primers 

and Phusion™ High–Fidelity DNA Polymerase (Thermo Scientific™). 

The amplified product was analyzed on agarose gel electrophoresis and 

purified by using GenepHlow™ Gel/PCR Kit according the 
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manufacturer’s protocol (Geneaid). The DNA fragment was cloned into the 

expression vector pET-17b (+) using the NdeI and EcoRI restriction sites 

to generate the recombinant plasmid. The recombinant plasmid was 

propagated in Escherichia coli DH5α and purified by High-Speed Plasmid 

Mini Kit (Geneaid). The mutant SaDHFRs were created by site-directed 

mutagenesis.  Wild-type and mutant SaDHFRs were expressed in E. coli 

BL21(DE3). The cells were grown in Luria-Bertani medium supplemented 

with 100 𝜇g/ml ampicillin at 37 ̊C, 250 rpm until optical density at 600 nm 

reached 0.8. The protein expression was induced using 0.5 mM isopropyl-

β-D thiogalacto-pyranoside (IPTG). The cells were incubated for 6 hours 

at 30°C after IPTG induction, and harvested by centrifugation (4 ̊C, 20 min, 

11,300xg). For protein purification, cell pellet was re-suspended in lysis 

buffer (50 mM sodium phosphate pH 8.0, 200 mM NaCl,10 mM 

imidazole), lysed by sonication, and centrifuged (4 ̊C, 20 min, 27,200xg). 

The clarified cell lysate was incubated with nickel-nitrilotriacetic acid (Ni-

NTA) agarose beads (Qiagen) at 4 ̊C for 45 minutes. After incubation, the 

mixture was transferred to a gravity column and washed with 50 mM 

sodium phosphate pH 8.0, 200 mM NaCl, 20 mM imidazole. SaDHFR 

proteins were eluted from Ni-NTA column using 50 mM sodium phosphate 

pH8.0, 200 mM NaCl, 250 mM imidazole. The enzyme was then 

exchanged into storage buffer (20 mM Tris-HCl pH 8.0, 20 % (v/v) 

glycerol, 0.1 mM EDTA, 2 mM 𝛽-mercaptoethanol, 50 mM NaCl) using 

dialysis. The enzyme was quantified by absorbance at 280 nm using molar 

extinction coefficient of 15,470 M-1cm-1 as calculated by the ExPASy–

ProtParam tool before flash freeze and storage at -80°C. DHFR activity 

was assayed by monitoring the rate of oxidization of NADPH at 340 nm, 

at 25°C for 3 minutes in 1 ml reaction. The concentrations of DHF and 

NADPH were determined using 282 = 28,000 M-1 cm-1, and 340 = 6,220 

M-1 cm-1, respectively (Penner & Frieden, 1987). For the determination of 
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Km
DHF, the concentration of NADPH was fixed at 100 µM and the 

concentration of DHF was varied between 3.12–100 µM. For 

determination of Km
NADPH, the reaction with 100 µM DHF was titrated with 

3.12–100 µM of NADPH. The total enzyme concentration used in steady-

state kinetic studies was 14 nM. The reaction was started by addition of 

DHF after a 1-minute preincubation. Enzyme inhibition assay was 

performed under the same steady state kinetics condition. The 

concentrations of trimethoprim inhibitor (dissolved in DMSO) were varied 

from 0–10 nM at different fixed concentrations of DHF. The reaction was 

started by DHF and TOP after a 1-minute preincubation. The Lineweaver-

Burk plot of 1/V vs. 1/[DHF] at various TOP concentrations yielded a 

family of straight lines that share a common Y-intercept, which is 

characteristic of competitive inhibition. The inhibitory constant (Ki) was 

extracted by using secondary replot of the slope from the Lineweaver-Burk 

plot vs. the concentration of TOP, where the X-intercept indicates the (–Ki) 

value. 

5. Structural validation of PfDHFR-TS and influential 
distances 

94BThe Plasmodium falciparum DHFR-TS (PfDHFR-TS) was expressed, 

purified and crystallized as described previously (Chitnumsub et al, 2004; 

Yuvaniyama et al, 2003). Briefly, the enzyme (15 mg mL-1) was co-

crystallized with 2 mM each of NADPH, dUMP and either methotrexate 

(MTX) or trimethoprim (TOP) using a microbatch technique. Crystals 

grew in 0.1 M NaOAc, pH 5.0, 0.14 M LiCl2, 14% (w/v) PEG3350 (for 

TM4/MTX) and 0.08 M NaOAc, pH 4.6, 0.8 M NH4OAc and 28% (w/v) 

PEG4000 (for K1/TOP). A single crystal was harvested into a crystallizing 

solution containing 20% (v/v) glycerol as a cryoprotectant and flash-frozen 
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in liquid nitrogen. For TM4/MTX, data were collected at beamline 

BL13B1 at NSRRC (Taiwan, ROC) and processed using HKL2000 

(Otwinowski & Minor, 1997). For K1/TOP, data were collected on 

Rigaku/MSC RU-H3R rotating anode generator (50 kV, 100 mA) equipped 

with Osmic Confocal Maxflux multi-layer optics and an R-Axis IV++ image 

plate area detector and processed with CrystalClear/d*TREK (Pflugrath, 

1999). MOLREP was used for molecular replacement (Vagin & 

Teplyakov, 2010) from the CCP4 suite (Winn et al, 2011). The wild-type 

TM4 (PDB ID: 3QGT) (Vanichtanankul et al, 2011) and K1 mutant (PDB 

ID: 1J3J) (Yuvaniyama et al., 2003) of PfDHFR-TS complex structures 

were used as the search models for TM4/MTX and K1/TOP data, 

respectively. Structures were refined using REFMAC (Murshudov et al, 

2011) and built using Coot (Emsley et al, 2010). Final structures were 

validated using SFCHECK (Vaguine et al, 1999). Data collection and 

refinement statistics are shown in Table 1.  

95BThe details of binding affinity prediction from the PfDHFR-TS influential 

distances obtained from trimethoprim are described in Table 2 & Table 3 and 

methotrexate complexes are described in Table 5 & Table 6. 
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1BTable 1.Data collection and refinement statistics of the ternary complexes of PfDHFR-TS WT (TM4) 
and double mutant PfDHFR-TS (K1, C59R+S108N). 

 96BTM4/MTX/NDP/dUMP 97BK1/TOP/NDP/dUMP 

98BData collection   

99BWavelength (Å) 100B1.5418 101B1.5418 

102BSpace group 103BP212121 104BP212121 

105BUnit-Cell Parameters   

106Ba, b, c (Å)  

107B, ,  () 

108B56.678, 154.403, 164.165 

109B90, 90, 90 

110B56.332, 153.739, 164.119 

111B90, 90, 90 

112BResolutiona (Å) 
113B50−2.25 (2.33−2.25) 114B−2.6 (2.7−2.6) 

115BTotal reflections 116B442,998 117B182,523 

118BUnique reflections 119B66,860 120B43,724 

121BCompleteness (%) 122B96.9 (92.9) 123B97.0 (79.5) 

124B<I/σ(I)> 125B22.8 (3.3) 126B10.1 (2.4) 

127BRmerge (%)b  128B7.4 (48.8) 129B8.3 (31.4) 

   

130BRefinement   

131BRwork/Rfree (%)c 132B18.22 (23.29) 133B19.79 (25.31) 

134BNo. of Atoms/Average B-

factors (Å2) molA, molB 

  

    135BProtein  136B8936/41.4, 8922/49.4 137B8964/60.8, 8964/66.8 

    138BInhibitor 139B53/31.8, 53/59 (in DHFR) 

140B53/69.8 (in TS) 

141B39/48.3, 39/66.8 

    142BNDP 143B71/29.8, 71/66.1 144B71/69.1, 71/104.3 

    145BdUMP 146B30/35.7, 30/54.4 147B30/81.6, 30/80 

    148BGlycerol 149B12/44.3, 12/42.9 150B12/52.9, 12/65.4 

    151BWaters 152B546/37.75 153B194/46.2 

154BR.m.s. Deviations   

    155BBond lengths (Å) 156B0.0095 157B0.0077 

    158BBond angles () 159B1.613 160B1.602 

161BRamachadran Plot   

     162Bfavored regions (%) 163B94.08 164B93.73 

     165Ballowed regions (%) 166B4.53 167B4.98 

     168Boutliers (%) 169B1.39 170B1.29 

171B

a Values in parentheses are for the highest-resolution shell.   

172B

b Rmerge = ΣhklΣi|Ii(hkl) − ⟨I(hkl)⟩|/ΣhklΣiIi(hkl), where Ii(hkl) is the intensity of an individual reflection 

and ⟨I(hkl)⟩ is the mean intensity of symmetry-equivalent reflections.  

173B

cRwork = Σhkl||Fobs| − |Fcalc||/Σhkl|Fobs|, where Fobs and Fcalc are the observed and calculated structure-

factor amplitudes, respectively. Rfree was calculated in the same manner as Rwork but using only a 5% 

unrefined subset of the reflection data. 
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2BTable 2. Binding affinity calculation from influential distance of K1 PfDHFR-TS crystal structures in 
complex with trimethoprim, Related to Figure 6 & Table 3 

 

 

3BTable 3. Experimental versus predicted binding affinity and influential distances from DHFR structures 
with TOP to show predictive power, related to Figure 6 and Table 2 

 

 

Kinetic experiment 

(exp)

Log10Ki ,TOP(exp)

=Log10(0.00362)

= -2.4413

Figure 6

Ki ,TOP(exp) =3.62 nM; 

or

0.00362 micromolar
N/A

*Remark: Residues for TOP's influential distance measurement in S.aureus DHFR is in brackets

Log10Ki  = 31.3940 - 4.2142 x Distance(Leu5:Ala7) 

_______ Equation 1________

From PfDHFR-TS with TOP crystal structures (PDB ID: 7F3Z), the x, y,z coordinates that are equivalent 

to those from SaDHFR can be used to calculate distances as follows.

LEU5 ILE14 (CB) -2.791 -0.275 -55.141

ALA7 ALA16 (CB) -3.226 7.834 -54.944

Distance Å

Graphical 

illustration

8.123048381

y zx

predicted 

(pred)

Binding affinity for TOP in P. falciparum  DHFR-TS

(PDB ID: 7F3Z) 
Calculation

Log10Ki , TOP

Binding Affinity 

(Ki ,TOP)

 Ki ,TOP(pred) = 10 (̂-2.838150487)

= 0.0014516 micromolar; 

1.4516 nM

Log10Ki ,TOP(pred)

= 31.3940 - 4.2142 x 

Distance(Ile14:Ala16)

      = 31.3940-(4.2142 x 8.123048381)

=  -2.8382

Solved 7F3Z

PfDHFR-TOP

residue

S.aureus 

DHFR

3FRE.pdb

residues

Ki , TOP Log10Ki , TOP Log10Ki , TOP Ki , TOP

3FRE 8.024023554 0.0006 -3.22184875 -2.420840063 0.003794547

2W9G 7.980840683 0.00097 -3.013228266 -2.238858804 0.00576954

3FRB 7.871374594 0.1724 -0.763462739 -1.777546814 0.016689879

4G8Z 7.366680528 0.227 -0.643974143 0.349334919 2.235295374

2W9H 7.83215328 0.43 -0.366531544 -1.612260352 0.024419662

3S3V 7.420398237 0.593 -0.226945307 0.122957748 1.327265325

3N0H 7.413157829 0.617 -0.209714836 0.153470276 1.423869792

2W9S 7.501040195 0.73 -0.13667714 -0.216883588 0.606898986

4KM2 7.258988979 0.82 -0.086186148 0.803168644 6.355776895

1DYR 7.290275578 20 1.301029996 0.67132066 4.69159657

1DG5 7.273849394 88 1.944482672 0.740543886 5.502295187

7F3Z 

K1 Pf -DHFR-TS & 

TOP

8.123048381 0.00362 -2.441291429 -2.838150487 0.001451609

PredictedExperiment
Distance (B7, B1)PDB
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4BTable 4. Binding affinities calculation for MTX in complex with DHFRs from various species 

5B(Top) Input binding affinity data from MANORAA, retrieved from BindingMOAD. (Bottom) Structural 
alignment for MTX-DHFRs and the output equation (Equation 2) to predict the trend of binding 
affinity values from influential distances. The same method was applied for empirical studies of 180 
ligand-protein complexes (Table 9) with mean R2 = 0.908 
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6BTable 5. Binding affinity calculation from influential distance from TM4 PfDHFR-TS crystal structure 
in complex with methotrexate, Related to Figure 7, Table 6 

 

 

Graphical 

illustration

Input proteins 

Input ligand

Input atoms

Template structure

Input structures

 PDB ID 

(all Chain A)

Use this URL

Influential distance

equation for MTX

Predicted 

influential 

distance equation 

in human  DHFR 

numbering

Prediction 

by 

influential 

distance

(pred)

Predicted 

Binding Affinity in 

PfDHFR-TS & MTX 

(PDB:7F3Y)

Proven 

by kinetic 

experiment 

(exp)

Ki , MTX in 

TM4 PfDHFR-TS

Remark:

From PfDHFR-TS with MTX crystal structures (PDB ID: 7F3Y), the x, y,z coordinates for distance calculation are

Human DHFR

Solved 7F3Y 

PfDHFR-TS 

residue
x y z

GLU30 ASP54 (CG) -0.086 -7.749 -53.035

THR136 THR185 (CB) 3.731 -6.899 -51.214

Distance
√((x2-x1)

2+(y2-y1)
2+(z2-z1)

2)  Å

Data

Input

DHFR in complex with methotrexate from various species

MTX

N1, N3, N5, N8, N10, NA2, NA4, C, C2, C4, C4A, C6, 

C7, C8A, C9, C11, C12, C13, C14, C15, C16, CM

1U72.pdb

1U72, 2DRC, 1RG7, 3DRC, 3DFR, 3IX9, 1DLS, 1DF7, 

2QK8, 3EIG, 1DHI, 1U70, 1DHJ

Figure 7

Table 4

4.313702586

Output

http://manoraa.icbs.mahidol.ac.th/Manoraa/sstq/overlay/display_prediction.

php?threeletter=MTX&substruct=MTX%3AN1&substruct=MTX%3AN3&sub

struct=MTX%3AN5&substruct=MTX%3AN8&substruct=MTX%3AN10&subst

ruct=MTX%3ANA2&substruct=MTX%3ANA4&substruct=MTX%3AC&substru

ct=MTX%3AC2&substruct=MTX%3AC4&substruct=MTX%3AC4A&substruct

=MTX%3AC6&substruct=MTX%3AC7&substruct=MTX%3AC8A&substruct=

MTX%3AC9&substruct=MTX%3AC11&substruct=MTX%3AC12&substruct=

MTX%3AC13&substruct=MTX%3AC14&substruct=MTX%3AC15&substruct

=MTX%3AC16&substruct=MTX%3ACM&pdbchaincode=MTX%3A1U72%3A

A%3ADYR_HUMAN%3A0.0000034&pdbchaincode=MTX%3A2DRC%3AA

%3ADYR_ECOLI%3A0.00013&pdbchaincode=MTX%3A1RG7%3AA%3AD

YR_ECOLI%3A0.0007&pdbchaincode=MTX%3A3DRC%3AA%3ADYR_EC

OLI%3A0.0007&pdbchaincode=MTX%3A3DFR%3AA%3ADYR_LACCA%3A

0.003&pdbchaincode=MTX%3A3IX9%3AA%3ADYR_STRPN%3A0.0039&p

dbchaincode=MTX%3A1DLS%3AA%3ADYR_HUMAN%3A0.0109&pdbchai

ncode=MTX%3A1DF7%3AA%3ADYR_MYCTU%3A0.011&pdbchaincode=M

TX%3A2QK8%3AA%3AQ81R22_BACAN%3A0.02&pdbchaincode=MTX%3

A3EIG%3AA%3ADYR_HUMAN%3A0.021&pdbchaincode=MTX%3A1DHI%

3AA%3ADYR_ECOLI%3A0.055&pdbchaincode=MTX%3A1U70%3AA%3AD

YR_MOUSE%3A0.23&pdbchaincode=MTX%3A1DHJ%3AA%3ADYR_ECO

LI%3A0.281&file=&time=2021_02_22_17_18_46

Log10Ki,MTX =  8.2741 -2.6172 x Distance(B4,B12)

Log10Ki,MTX = 8.2741 - 2.6172 x Distance(Glu30:Thr136)

_______Equation 2_________

Log10Ki ,MTX(pred) =8.2741- 2.6172 x Distance(Asp54:Thr185)

= 8.2741- (2.6172 x 4.313702586)

Log10Ki ,MTX(pred) = -3.015722408

Ki , MTX(pred) = 0.000964 micromolar; or 0.96 nM

Ki ,MTX(exp) = 0.20 ± 0.03 nM; or 0.0002 micromolar

Log10Ki ,MTX(exp) = -3.69897
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7BTable 6. Log10Ki, MTX used for binding affinity calculation from influential distance in crystal 
structures of DHFR in complex with MTX, Related to Figure 7 and Table 5 

 

68B**Use the text colour on the first column as seen on Figure 7 plot. 

6. Kinetic Analysis for PfDHFR-TS 

 

174BDHFR activity was determined spectrophotometrically by measuring the 

rate of reduction of NADPH at 340 nm using ε340 of 12,300 M-1cm-1 

(Hillcoat et al, 1967). Briefly, steady-state kinetics studies were performed 

using 6–10 mU of purified enzyme in the standard reaction (1 mL) of 

1DHFR buffer (50 mM TES, pH 5.0, 75 mM 2-mercaptoethanol and 1 

mg mL-1 BSA) containing 100 µM each of DHF and NADPH. Michaelis-

Menten constant (Km) was determined by varying either DHF or NADPH. 

The Km value was calculated using non-linear regression with 

KaleidaGraph 3.51 (Synergy Software, Reading, PA, USA) by fitting data 

to the Michaelis-Menten equation. The inhibition constant (Ki) was 

performed in 200 L reaction as described previously 

(Kamchonwongpaisan et al, 2020). The Ki value was calculated using non-

Target Protein** PDB
Binding Affinity 

(micromolar)

Ki ,MTX 

(nM)

Distance 

(B4,B12)

Log10Ki ,MTX 

(pred)

Log10Ki ,MTX 

(exp) 

micromolar

DYR_HUMAN 1U72 0.0000034 0.0034 4.164948739 -2.62640384 -5.46852108

DYR_ECOLI 2DRC 0.00013 0.13 4.1888052 -2.688840968 -3.88605665

DYR_ECOLI 1RG7 0.0007 0.7 4.111393195 -2.486238269 -3.15490196

DYR_ECOLI 3DRC 0.0007 0.7 4.190847886 -2.694187086 -3.15490196

DYR_LACCA 3DFR 0.003 3 4.416147416 -3.283841017 -2.52287875

DYR_STRPN 3IX9 0.0039 3.9 4.034426601 -2.284801301 -2.40893539

DYR_HUMAN 1DLS 0.0109 10.9 4.018967405 -2.244341492 -1.9625735

DYR_MYCTU 1DF7 0.011 11 4.087547676 -2.423829776 -1.95860731

Q81R22_BACAN2QK8 0.02 20 4.15034095 -2.588172334 -1.69897

DYR_HUMAN 3EIG 0.021 21 4.101166785 -2.45947371 -1.67778071

DYR_ECOLI 1DHI 0.055 55 3.529805094 -0.964105891 -1.25963731

DYR_MOUSE 1U70 0.23 230 4.169463994 -2.638221166 -0.63827216

DYR_ECOLI 1DHJ 0.281 281 3.527337381 -0.957647394 -0.55129368

TM4 

PfDHFR-TS 

& MTX

7F3Y 0.0002 0.2 4.313702586 -3.015722408 -3.69897
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linear least square equation for competitive inhibitor using KaleidaGraph 

3.51 and used in the form of Log10Ki that was obtained experimentally.  

7. Favorable distance from binding affinity calculation of 
SaDHFR-TOP 
 

175BWe developed a model to predict a set of highly influential descriptors 

(inter-residue distances) of the inhibition constant (Ki) for trimethoprim 

(TOP) on dihydrofolate reductase (DHFR). The distance between Leucine-

5 and Alanine-7 (DL5:A7) exhibits the most linear influence on Log10Ki,TOP. 

We proceeded with a set of rounds, running Partial Least Squares 

regression (PLS) using the program XLSTAT to estimate the best-fitting 

model, with the most probable explanatory variables or descriptors. 

Variables with less importance were filtered-out and the remaining 

variables were subsequently passed on to the next round of running until 

yielding the minimal number of variables. The model’s predictive quality 

is measured by the Q2 cumulative index (Q2cum), which involves the cross-

validation and sum of squares of errors. In this study, we chose the cross-

validation method of Jackknife leave one out (Jackknife LOO) (95% 

confidence interval) to validate the regression, and assigned the sum of 

squares of errors to be the minimum measure of predicted residual error 

sum of squares (minimum PRESS). The standardized coefficients enable 

us to weigh the descriptors in model, with the mathematical sign of each 

item suggesting the direction of the represented distance. The final Q2 cum, 

given the yielded variables, is still greater than zero, which indicates that 

the final model is validated and independent from the training data. The 

mathematical sign of coefficients from the model suggests the distance 

DL5:A7 as a negatively influential distance to the Log10Ki,TOP; in other words, 

the longer the distance DL5:A7, the lower the Ki,TOP. To generalize the result 
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from PLS to research, we observed the suggested distances from the 

structure (PDB: 2W9G) in the Staphylococcus aureus DHFR to depict and 

justify how the amino acid residues and their inter-residue distances affect 

the binding to trimethoprim. The observation of the active site suggests that 

the width between the amino acid residues Leucine-5 and Alanine-7 shows 

the most potential importance for trimethoprim (TOP) binding; 

consequently, this suggests further investigation at the Leucine-5 to Valine 

(Figure 5). 

176BThe detailed calculation for this analysis is shown in Table 8. Our algorithm 

further analyses the effects of various distance directions and identifies 

distances that are most often to be found proportional or inversely 

proportional to Log10Ki. By understanding trends inside the pocket, we 

should be able to predict the direction and the desired distance to be 

expanded or contracted in order to decorate either the protein or the ligand 

to bind more tightly to one another.  

 

8BTable 7. Structural alignment and distance-binding affinity relationship for TOP-DHFR (Equation 1) 
are obtained by using the pyrimidine-2,4-diamine ring and the linker's input atoms as the rigid 
fragment from trimethoprim and their PDB files (Table 8). 
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9BTable 8. Trimethoprim binding affinity calculation to prove that influential distance equation can be 
used for improving Ki,TOP in SaDHFR, Related to Figure 4, Figure 5 & Table 7. 

 

8. Empirical studies of influential distance equation  

177BA machine learning algorithm is used to generate a prediction model with 

a significant number of binding data (Ki or Kd) available as PDB data on 

the latest CREDO database 2016 (Schreyer & Blundell, 2013). The 

rationale was to use the inter-residue distances harvested from frequently 

occurring atoms and residues for constructing the equations that can predict 

the majority of Ki or Kd data via distances alone. The protocols for 

generating the models are the same for all families of PDB chains included. 

The primary goal was to find general solutions where distance is most 

Graphical 

illustration

Input proteins 

Input ligand

Input atoms

Template structure

Input structures

 PDB ID(chain)

 

Use this URL

Influential distance

equation for TOP

Predicted binding 

affinity in 

S.aureus  DHFR 

sequence 

Figure 5

Distance 

direction 

in Figure 4

Implication

Table 7

1DG5(A), 1DYR(A), 2W9G(A), 2W9H(A), 2W9S(A), 

3FRB(X), 3FRE(X), 3N0H(A), 3S3V(A), 4G8Z(X), 4KM2(A)

-

DHFR in complex with trimethoprim from various species

Valine is shorter than Leucine, hence the pocket can be 

expanded to get longer distance in the pocket for better Ki .

Site-directed mutagenesis at L5V can improve Ki ,TOP in 

S.aureus  DHFR from 6.2 ± 0.62 nM to 3.5 ± 0.92 nM.

http://manoraa.icbs.mahidol.ac.th/Manoraa/sstq/overlay/display_predicti

on.php?threeletter=TOP&substruct=TOP%3AN2&substruct=TOP%3AN4

&substruct=TOP%3AN5&substruct=TOP%3AN7&substruct=TOP%3AC1

&substruct=TOP%3AC3&substruct=TOP%3AC6&substruct=TOP%3AC8

&substruct=TOP%3AC9&substruct=TOP%3AC10&pdbchaincode=TOP

%3A3FRE%3AX%3ADYR_STAAU%3A0.0006&pdbchaincode=TOP%3A2

W9G%3AA%3ADYR_STAAU%3A0.00097&pdbchaincode=TOP%3A3FR

B%3AX%3ADYR_STAAU%3A0.1724&pdbchaincode=TOP%3A4G8Z%3A

X%3ADYR_PNECA%3A0.227&pdbchaincode=TOP%3A2W9H%3AA%3A

DYR_STAAU%3A0.43&pdbchaincode=TOP%3A3S3V%3AA%3ADYR_H

UMAN%3A0.593&pdbchaincode=TOP%3A3N0H%3AA%3ADYR_HUMAN

%3A0.617&pdbchaincode=TOP%3A2W9S%3AA%3ADYRA_STAAU%3A

0.73&pdbchaincode=TOP%3A4KM2%3AA%3ADYR_MYCTU%3A0.82&p

dbchaincode=TOP%3A1DYR%3AA%3ADYR_PNECA%3A20&pdbchainc

ode=TOP%3A1DG5%3AA%3ADYR_MYCTU%3A88&file=&time=2021_0

2_22_13_36_15

Input

Data

Output

Experimental prove

TOP

N2, N4, N5, N7, C1, C3, C6, C8, C9, C10

 3FRE.pdb

Log10Ki  = 31.3940 - (4.2142 x Distance(B7,B1))

Log10Ki  = 31.3940 - 4.2142 x Distance(Leu5:Ala7) 

This coefficient is negative, the longer the distance L5:A7, 

the lower Log10Ki ,TOP.
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influential to the binding affinity values.  Similar methods to variation parts 

previously mentioned were applied to all ligands with associated Ki or Kd 

less than 70,000 µM and having more than 3 structures in the PDB. From 

22,506 PDB ligands, 22,252 ligands do not pass the criteria of more than 3 

structures with Ki or Kd. PLS cannot process 74 ligands for the following 

reasons e.g., no heteroatom for selection, atom sets of ligands differ and 

cannot be superposed, no conserved atom and residue bins, and Ki or Kd 

having same value for all structures. The Partial Least Squares (PLS) 

method was applied to give a model equation from the distances inside the 

pockets. For each of the 180 data sets obtained, all of the heteroatoms of 

their ligand were selected for superposition to obtain frequently occurring 

neighboring entities for distance measurements. All the frequently 

occurring atoms and residues in the bin were used to refer to distinctive 

part of the residues to generate the distance table. The obtained inter-

residue distances as independent variable with binding affinity values 

(Log10K) as dependent variables were subjected to the PLS regression as 

described in the binding-distance correlation function section. Multistep 

VIP (variable importance in the projection) values were filtered to choose 

the distances that are the determinants of binding affinity. The maximum 

number of output distance variables used for constructing the PLS models 

is limited to three parameters or less to minimize the equation’s 

complexity, overfitting, and probability of matching by chance. The cross-

validation method was applied and all the most important distance 

descriptors obtained were called influential distances. The same techniques 

were applied to ligand-protein structures with binding affinity values, and 

the distances were drawn on the structures, with a button available for 

viewing these distances and their directions, obtained from the equation on 

the template PDB file in the last column of Table 9. The obtained R2 values 

were used to estimate the agreement between the experimental and 
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predicted binding affinity according to their PDB’s 3-letter codes. The final 

results comprise 180 sets of ligands (n=180) with predictive power, i.e. 

mean R2 of 0.908, median R2 0.996 and standard deviation (SD) 0.182.  

 

10BTable 9. Empirical studies of influential distances obtained from superposition of heteroatoms of 
PDB ligands with visual inspection URLs and links to each data set, Related to Empirical studies of 
influential distance equation under quantification and statistical analysis of the methods. 

 

 



29 

 

 

 

 



30 

 

11BTable 10. Limitation of the method presented using Median of R2 vs number of structures 

178BStructures  179BR2 median 180BArea 181BDecreasing R2 as the structures increase 

182B3 183B1 184B0.998325 

 
185B  

 

186B  187B  188B  

189B4 190B0.99665 191B0.984825 192B    193B  

194B5 195B0.973 196B0.9304 197B    198B  

199B6 200B0.8878 201B0.88035 202B    203B  

204B7 205B0.8729 206B0.764575 207B    208B  

209B8 210B0.65625 211B0.69845 212B    213B  

214B9 215B0.74065 216B0.746975 217B    218B  

219B10 220B0.7533 221B0.71345 222B    223B  

224B11 225B0.6736 226B0.62065 227B    228B  

229B12 230B0.5677 231B0.496525 232B    233B  

234B13 235B0.42535 236B0.297775 237B    238B  

239B14 240B0.1702 241B0.20065 242B    243B  

244B15 245B0.2311 246B2.00445 247B    248B  

249B22 250B0.3416 251B0.4016 252B    253B  

254B24 255B0.06 256B  257B    258B  

259BArea Under Curve 260B10.739 261B  262B  263B  264B  

 

265BThis graph is a disclosure of the limitation of this tool, since we want 

to provide transparency of the system. We offer the reader this insight, so 

that it will allow other researchers to consider whether they can improve 

the method further, by adjusting input atoms and making a careful distance 

and binding affinity measurements. Our default setting of only heteroatoms 

selected suggests that the method can be generalized. There is a clue from 

R2 statistics in this Table 9 that the distance and its influence on Ki can be 

seen in various superposition settings, as shown by the agreement of the 

majority distance data sets, filtered by the same procedure (median R2 

0.996 and mean R2 0.908). If the user can provide more superimposable 

atoms as input, most of the low R2 values can be increased. Although, our 

results still have a limited number of data points, they have potential to be 

used as a guideline for similar studies and for use as a baseline for other 

researchers. More carefully conducted data from a series of crystal 

structures with corresponding binding affinities, will provide good quality 

data points and better prediction accuracy, facilitated by MANORAA 

algorithms. 
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Results & Discussion 

1. Conserved parts of protein-ligand complexes 

266BIn terms of drug design based on the lock and key concept, the web server 

can dissect the protein surrounding the ligand into regions of similarity and 

difference. The similarity data, based on frequently occurring atoms and 

residues, can be collected from the grid-based superposition of a large 

number of protein structures in the same homologous family. These grid-

based superpositions of the user-selected PDB codes provide information 

on which parts of the protein are conserved and required for ligand design. 

These conserved parts act as a pivot point to interpolate to the part of the 

ligand fragment that should be maintained inside the core of the structure. 

This process can be automated by programming to superimpose numerous 

proteins that bind to a similar ligand, especially on the user-provided rigid 

fragments. The parts that always retain the same information for both type 

and position can be binned using a grid box. The outcomes are displayed 

in a series of gradient colors from blue to yellow, based on the frequency 

of entities that are populated inside the grid box (Figure 2 & Figure 3).  

 

12BFigure 2. Structural conservation represented as a gradient in color from yellow to green to blue to 
visualize the occurrence of conserved residues. 
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13BFigure 3. Density display of the distinctive parts of conserved residues that frequently occur. After 
normalization, they are used for creating the gradient-color pictures (left). All the distances plotted 
between conserved atom pairs in the bin are then filtered and included in the protein-ligand distance 
binding affinities correlation model (right). 

267BSuperposition of protein-ligand complex structures based on the ligand’s 

rigid parts revealed certain protein atoms that retain their positions in more 

than 75% of the cases for the kinase and for the dihydrofolate reductase 

data sets. Those positionally conserved entities in the pocket can be used 

as reference points to guide where atoms inside the pocket should retain 

their positions during synthesis. Since these points represent atoms that 

remain in the same position in the majority of the structures, they are likely 

to have preferable molecular interactions with the ligand and be well 

preserved. These frequently occurring entities are illustrated for protein 

kinase (Figure 2 & Figure 3) and dihydrofolate reductase.  

268BThis phenomenon is observed in several sets of proteins, such as the folate 

binding residue in dihydrofolate reductases and the hinge region in kinases, 

as in the sample data by selecting the “Structural Conservation” button 

from URLs   

269Bhttp://manoraa.icbs.mahidol.ac.th/Manoraa/ligand/MTX and 

http://manoraa.icbs.mahidol.ac.th/Manoraa/ligand/STU respectively.  

http://manoraa.icbs.mahidol.ac.th/Manoraa/ligand/MTX
http://manoraa.icbs.mahidol.ac.th/Manoraa/ligand/STU
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The last three letters of these URLs can be replaced by any ligand’s PDB 

3-letter codes that are available in CREDO (Schreyer & Blundell, 2013). 

2. Variation parts that related to binding affinity values 
63BAnother aspect that relates to the binding constant, which tells how the 

drugs can be improved for efficiency, is based on correlation between the 

inter-residue distances and the binding affinities. We observed that 

distinctive parts of the amino acid residues, mostly at the penultimate atoms 

(Tanramluk et al., 2009) can be used as points for distance measurement, 

which can be used to train Partial Least Squares algorithms. This can result 

in model equations that describe the relationship between binding affinities 

and distances with high accuracy (mean R2 > 0.9). We also show in detail 

that these distances can be used to improve the value of binding affinities 

of Staphylococcus aureus DHFR (Dale et al, 1993) with trimethoprim. The 

obtained binding affinity equation for Ki,TOP when setting rigid fragment 

atoms at pyrimidine-2,4-diamine ring and the linker can be found in Table 8. 

64BThe model equation generated from clicking “Binding-Distance 

Correlation” button of  

http://manoraa.icbs.mahidol.ac.th/Manoraa/ligand/TOP is: 

65BLog10Ki,TOP = 31.394 − 4.2142×D(Leu5,Ala7)   (Equation 1) 

66Bin S. aureus DHFR    

270BReverse engineering the distance of the amino acids inside the protein S. 

aureus DHFR by site-directed mutagenesis suggest that binding affinities 

(Ki,TOP) can be improved from 6.2 ± 0.62 nM to 3.5 ± 0.92 nM by mutating 

from leucine to valine (L5V) to expand the pocket in the direction that is 

proportional to the largest coefficient by deducting the size of amino acid 

(Figure 4, Figure 5, Table 7).  

http://manoraa.icbs.mahidol.ac.th/Manoraa/ligand/TOP
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14BFigure 4. The orange bar is drawn between SaDHFR's residues Leu5 and Ala7, which is the favorable 
expansion distance based on the coefficient of the independent variables in Equation 1 that results 
in a lower Ki,TOP for SaDHFR (proved in Table 8). 

 

15BFigure 5. Bar graph representing Ki,TOP of wild-type (WT) and mutant SaDHFR (L5V, L5M, A7S, A7G). 
The x-axis is the type of mutation and the y-axis is the Ki value of trimethoprim (Ki ,TOP). The data 
are presented as mean ± standard error of the mean (n = 3). The L5V mutation suggested 
by  (Equation 1) can improve the SaDHFR binding affinity to trimethoprim by 2-fold (Table 8). 
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271BThe blind test with X-ray crystal structure of K1 Plasmodial falciparum 

dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) in complex 

with trimethoprim (TOP) (PDB ID: 7F3Z) results in Ki,TOP prediction of 

1.45 nM while the experimental Ki,TOP was 3.62 nM (Table 2). Therefore, 

this distance in crystal structure results in acceptable prediction of 

trimethoprim binding affinity (Figure 6, plotted using data from Table 3).  

 

16BFigure 6. Predictive power of the influential distance equation for Ki,TOP in complex with K1 mutant 
of PfDHFR-TS (red circle, Table 2 and Table 3). 

272BAlthough not all the S. aureus DHFR mutated residues conform to the 

equation, the results showed that our algorithm could indicate, at least 

once, how the binding affinity can be computationally improved by two-

fold (Figure 5), which was subsequently confirmed by kinetics studies of 

purified S. aureus DHFR (Dale et al., 1993; Thampradid, 2016).  
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273BWe also validated the distance from crystallographic studies of wild-type 

Plasmodium falciparum dihydrofolate reductase-thymidylate synthase 

(PfDHFR-TS) (Yuvaniyama et al., 2003) with methotrexate (MTX) to see 

how the generated model built from Partial Least Squares regression 

(PLS) of influential distances from 13 DHFR structures can predict Ki in a 

novel protein-ligand complex structure (Table 5).  

274BThe model equation was  

67BLog10Ki,MTX= 8.2741−2.6172×D(Glu30,Thr136)                                             (Equation 2) 

275Bin Human DHFR or equivalent in other species.  

276BThe solved X-ray structure of PfDHFR-TS in complex with MTX was 

used to blind test the influential distance obtained from the structure and 

put back into the equation (PDB ID: 7F3Y). The predicted binding 

affinity values calculated from distance (4.314 Å) between Asp54 and 

Thr185 in X-ray structure of PfDHFR-MTX complex with the 

MANORAA’s equation was 0.96 nM while the Ki,MTX of PfDHFR-TS 

from kinetic experiments was 0.20 ± 0.03 nM (Table 5). If the DHFR data 

from mouse are excluded, the trend of the binding affinity from 

prediction using influential distances in crystal structure of PfDHFR-TS 

MTX corresponds well with the experimental data, as can be seen in red 

circle located on the trend line (Figure 7, plotted using data from Table 6).  
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17BFigure 7. Predictive power of the influential distance equation to calculate Ki,MTX in TM4 PfDHFR-TS 
(red circle,Table 5 & Table 6). The x-axis is the experimental binding affinity value and the y-axis is 
the predicted binding affinity value calculated by influential distances. The dataset used for training 
contained influential distances calculated from the Ki,MTX of E. coli DHFRs, shown as purple squares; 
human DHFRs, shown as blue diamonds; and all other bacterial DHFRs, shown as triangles. The 
distance between Asp54 and Thr185 in PfDHFR-TS X-ray structures in complex with methotrexate has 
shown the power of the prediction of the model. The mouse DHFR, an orange diamond, is an outlier. 

277BThe inaccuracy comes from the heterogeneity of data from wet lab, the 

flexibility of these molecules (both TOP and MTX) which affects the 

superposition and hence the binning of the atomic environments. Also, 

there is a difference in the conformation of MTX molecules in PfDHFR-

TS from other methotrexate complexes in the 13 input DHFR from various 

species that were used to train the model. This MTX conformation (PDB: 

7F3Y) is found in parasitic DHFR-TS structures, such as DHFR from C. 

hominis and T. gondii DHFR (unpublished), except for Trypanosoma cruzi 

DHFR. The trimethoprim molecule is known to adopt upward 

conformation in eukaryotes and downward conformation in bacterial and 

fungal DHFR (Matthews et al, 1985). This trimethoprim in Pf-DHFR-TS 
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adopted the downward conformation (PDB: 7F3Z) and shows acceptable 

predictive power of influential distance equation (Figure 6). By increasing the 

number of atoms of MTX and TOP along the core of the structure for 

superposition, the models can be improved by using our web interface. 

However, the obtained distances will be changed from the initial data set 

which use heteroatoms by default because they are obtained from binning 

another set of atoms used for superposition. The predictive models are 

obtained from the set of superposed atoms that give more numbers of 

conservation and results in one distance, and not necessary the ones with 

the highest R2 values. See X-ray data collection in Table 1 and the MTX 

binding affinity calculation in Table 4, which results in Table 5 & Table 6 and 

Figure 7 

3. Protein-ligand interaction analysis 

278BThis function can be used to observe protein and chemical fragment 

interaction. We found that the number and the type of atoms affect the 

binding affinities, as well as distances, due to chemical interactions 

requiring certain interacting atom types. The function calculates the 

chemical binding of the fragments against all the proteins in the database, 

where the user can observe a particular atomic interaction by clicking in 

check boxes of atoms they want to observe. The trend of binding affinities 

often depends on the number of hydrogen bonds or ionic interactions. 

Sometimes more interactions are better due to favorable attraction, while 

other times a smaller number of interactions is better due to the steric 

interactions. If we know the trend of how many hydrogen bonds should be 

made, certain hydrogen bonds can be added or removed to control the 

binding affinities to a desirable positive or negative trend. The trend of 

numbers of hydrogen bond and binding affinities were based on our 

previous work on protein kinase interaction with methylamine moieties of 
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staurosporine (Tanramluk et al., 2009) and was also confirmed by another 

experimental group (Hirozane et al.), who studied 288 pan-kinases for 

design of fluorescent probe (Hirozane et al, 2019). 

4. Active site boundary 

279BThis function is used for defining the active-site boundaries based on the 

accumulation of ligand atoms as a voluminous structure inside the pocket. 

The active site boundaries in ligand design used to be obtained from rolling 

a sphere on the van der Waals surface of the protein active site, until the 

development of more recent grid-volumetric based methods and others 

(Ehrt et al, 2018). In this study, we used each of the ligand atoms as a probe 

to detect the parts of the pocket that are accessible by foreign non-protein 

atoms. The grid boxes are used for summing up ligand atoms in each 

location by binning atoms; this will intensify the signal-to-noise ratio of 

each atom type compared with the background. Cutoff numbers were 

applied so that atoms that always stay in certain locations more often than 

the cutoff value should show up at higher cutoff than the others (Figure 8, 

Supplemental Video).  

280BBy this method, we may re-engineer the imaginary ligand inside the pocket 

of the protein by observing various species of the main protease and 

including those of the recent Coronavirus protease structures from the 

Diamond Light Source website. Superposition of SARS-CoV-2 main 

protease structures harbouring covalent, non-covalent, or other small 

fragments (The Diamond Light Source, 2020) allows us to see the 

summation of all the fragments dissected into various frequently occurring 

atom locations. 
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18BFigure 8. Main protease showing frequently occurring atoms in green, with size depending on the 
frequency found (Supplemental Video). The map shows which atoms of the ligand, out of hundreds 
of structures, retain their location more than other random ligand atoms, using the size of the spheres 
to indicate frequency. In this way, drug researchers can infer which atoms of the drug to retain. 

281BThis information is available on the URL http://mprocovid.com, which is 

an example of how we use the MANORAA system’s programmable URL 

as a backend for identifying the most important atoms for drug design. 

5. Empirical studies of influential distances equations 
 

282BSimilar methods to the previously mentioned Variation Parts were applied 

to all the ligands with binding affinity values available with more than 3 

structures in the PDB, with each set having default input as all heteroatoms 

for superposition. Partial Least Squares methods were used to learn the 

distances inside the pockets. All the most important distance descriptors 

obtained were called influential distances. From 180 ligand-protein 

structures with available binding affinity values, distances were drawn on 

the structures with available URL for viewing the directions obtained from 

http://mprocovid.com/
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the equation on the 180 template PDB files in the last column (Table 9). This 

algorithm can empirically relate the frequently occurring entities inside the 

protein with the binding affinity, as shown by the mean R2 equals to 0.908. 

Noted that when structures in the data set are larger, the R2 may be lower 

because distances and Ki are separately obtained by laboratories from 

various settings around the world. We map these distances to find the 

physical meaning and observe by eye-inspection. There is an observable 

trend of the binding affinity data prediction based on these equations and 

they can be estimated by using the logarithm of Ki or Kd and excluding all 

the other types of activity such as IC50 (the half maximal inhibitory 

concentration). In this way, although the values vary due to slight technical 

differences, the binding affinities that have the same magnitude should be 

located near one another in the trend line. We hypothesized that the inter-

atomic distance equation obtained can relate to physico-chemical 

properties (Ki or Kd). Many of these influential distances located parallel to 

the plane of ligand’s aromatic rings. These data are available in tabulated 

format with a graphical interface to allow visual observation by peers via 

the URL provided in Table 9.  

Conclusion 

283BAlthough, the machine learning algorithm allows for general prediction, 

there is a need to show why these descriptors are influential and offer ways 

to be understood and interpreted using the web interface. The bottom line 

is to have a platform that allows users to overcome the limit of synthesizing 

knowledge from complex data in conventional publishing styles. This 

platform offers a customized integration of the biomedical big data for drug 

design and allows in-depth interpretation of the data. Although, some parts 

of the database backend rely on CREDO v.2016 and may not be the service 
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of propriety data from drug company. However, we allow uploading 

structure, so all can use this platform through the programmable URL, 

allowing agile queries via the data interface for multiple operating systems. 

The machine learning service we provide allows for a custom-made 

fragment superposition and Partial Least Squares regression analysis to 

explain several protein-ligand complexes providing acceptable values with 

our experimental confirmation from 3 separated scenarios. Such analyses 

are now possible for sets of homologous structures in the PDB, as 

demonstrated for DHFR and protein kinases.  We envisioned that the 

method can be improved so that we can understand how to design 

multitargeting ligands by introducing preferable distances by adding 

bioisosteric ligand atoms near the residue used to measure influential 

distances to show contraction or expansion direction along the protein. 

Furthermore, promiscuous atoms at each residue obtained from the 

conservation location can be considered as requirements for binding and 

hence are often present in off-target proteins. The future goal is to improve 

the platforms that can be used for both inhibitor design and protein 

engineering, and to bridge the gap between in-depth scientific calculations 

and big data (Figure 1).  

284BThe in-depth analysis allows web-based analysis of X-ray structure in 

multiple proteins, which include structural conservation, protein-ligand 

interaction, and structural variation. By using our service, unusual side-

effects such as cardiac muscle contraction from schizophrenic drug, 

trifluoperazine; and breast cancer tendency in estradiol hormone can be 

discovered without waiting for the side-effects to occur in the large 

population. The side effects can be discovered by linking through proteins 

causing symptoms, biological pathways and their common baseline 

expression in specific tissues using our service. Learning how a small 
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molecule interacts with protein based on our influential distance equations 

can open door for a breakthrough to next generation ligand design. By this 

way, the system created can be of benefit to the drug design community. 
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 Appendix 
 

Supplemental Video about the MANORAA project at Mahidol World (>500 views) 

292Bhttps://youtu.be/f9eeXNGJJF0 

https://youtu.be/f9eeXNGJJF0



