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Executive Summary

For the future of biocomputing era, the machine learning platform for structure-based drug design
is very crucial. The world is in urgent need to harvest big data for a better understanding of
controlling molecular function. The ability to dissect drug binding affinity from protein structures
can enable next generation molecular design. Our MANORAA server allows international
collaboration for the advancement of scientific discovery related to healthcare and well-being.

MANORAA project is an augmented intelligent drug design platform. It has been built from
partnership among various Mahidol University's departments in collaboration with the University

of Cambridge, UK. The aim is to offer insights into information harvested from many biomolecular

web resources. By this digital transformation, we allow a better understanding of molecular basis
from big picture and in-depth perspectives to accelerate laborious experiments with data science.
We also support open science by depositing 180 ligand data sets to public repository.

MANORAA allows in-depth analysis of inter-residue distances in protein pockets. It merges the
interface of physical, digital, and biological world through drug discovery research. Unlike most
machine learning studies, we provided careful experimental prove of our findings that certain
distances and hence their mutation can result in improved binding affinity. By measuring molecular
distance and interaction at angstrom level, the users can decipher complex features of a target
molecule by just a few mouse clicks. This server allows agile queries and hence it is built as a
webserver accessible programmatically. Due to recent data privacy regulations, we are unable to
collect user's information. However, we hope to allow user's login to allow for voluntary data
submission and scientific networking.

This timely research has enabled pandemic preparedness. For instance, our MproCovid.com
webserver powered by MANORAA is devoted to understanding the actives site of SARS-CoV-2
Main Proteases. The engine is available for analysis of structures for the whole Protein Data Bank.
It may enable the advancement of precision medicine by paving the way for tailor-made molecular
design. The proteins in the platform include of targets for infectious diseases, non-communicable
diseases, and many more.

We have also aimed to train younger generations scientists to become high-skilled workforce by
providing data foundation for bioscience research. During the last year, Manoraa was taught in
Metaverse for the MBMG 601 (Current Topics in Molecular Biology) course and obtained full
scores evaluation (5/5) for all categories. This centralized platform has opened door for online
education, where learners’ experiences integrate seamlessly into the digital world.

The MANORAA algorithms has been published in “Structure” and was ranked as “Most Read” at
Cell Press website for the first 5 weeks. Our YouTube video, which introduces the MANORAA
project, has gained the attention from world experts in the field of drug discovery (Linkedin). There
are invitations for presentations from the great pioneers of structural bioinformatics & drug design
(see Appendix), which affirmed that this server brings values to the molecular design community.

In conclusion, this multidisciplinary machine learning platform can guide molecular design
technology and can strengthen human capabilities to understand complex biological world through
our machine learning algorithms. If the backend databases grow larger, it can act as a biomolecular
data hub. The biomolecular design process can be cheaper, faster, and more effective.
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Abstract

The MANORAA platform uses structure-based approaches to
provide information on drug design, originally derived from
mapping tens of thousands of amino acids on a grid. In-depth
analyses of the pockets, frequently occurring atoms, influential
distance, and active site boundaries, are used for the analysis of
active sites. The algorithms derived provide model equations that
can predict whether changes in distances, such as contraction or
expansion, will result in improved binding affinity. The algorithm
is confirmed using kinetic studies of DHFR, together with two
DHFR-TS crystal structures. Empirical analyses of 881 crystal
structures involving 180 ligands are used to interpret protein-
ligand binding affinities. MANORAA links to major biological
databases for web-based analysis of drug design. The frequency
of atoms inside the main protease structures, including those from
SARS-CoV-2 shows how the rigid part of the ligand can be used
as a probe for molecular design (http://manoraa.org).

Video Abstract at Mahidol World


http://manoraa.org/

Introduction

Big data and machine learning offer exciting opportunities for drug
discovery (Adeshina et al, 2020; D’Souza et al, 2020; Hochreiter et al,
2018). Machines are unlikely to replace human intelligence completely in
the field of drug discovery, since much of the decision making in drug
discovery will still rely on the intuition of the medicinal chemist. However,
we can make the procedure more efficient by equipping the human brain
with easy to use, fast and affordable tools to assist the drug design process.
During this era of the pandemic, scientists are in urgent need of having a
centralized and systematic platform to facilitate small molecule drug
discovery. This type of drug is indispensable as it requires more feasible
administration and logistics, compared to other more advanced biologics

for therapeutic use.
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Figure 1. MANORAA drug-design server scheme.



Nowadays, machines can devise routes for synthesizing almost any
molecule. The challenge has now shifted towards deciding what molecule
should be synthesized to optimize binding of inhibitor to target proteins.
CRISPR-cas9 will allow us to generate any protein in a living cell, so that
we may be able to adjust the binding affinity, so that it is under the control
of an inhibitor. Chemical databases such as ChEMBL (Davies et al, 2015)
and PubChem (Kim et al, 2018) can facilitate the gathering of ligand
information. However, there is still no obvious way of interpreting
information on drug-protein interactions to impact society in terms of
providing new perspectives for the design of new medicines. With the
amount of data available and recent advances in protein folding (Jumper et
al, 2021; Tunyasuvunakool et al, 2021), scientists should be able to use
machine learning, not only to design small molecule ligands, but also to
determine what mutations should be made to improve the healthcare and
biotechnology industries. However, there is no centralized system to
facilitate the design of new ligand that can be shared among scientific
community. Although, the new methods, such as Deep Learning, have been
used in computer-aided drug design and discovery with excellent results
(Nguyen et al, 2019), the drawback lies in the complexity of the calculation
that makes analysis and interpretation of results very difficult (Ding &
Zhang, 2021; Lavecchia, 2019). For the field of image recognition,
understanding the parameters may not be as important as accuracy in
prediction. However, for drug design, the analysis to determine which part
of the molecule that makes the ligand bind to a protein tighter would greatly
affect the next step of design. Machine learning attempts have been made
for virtual screening by training models using decoys (Adeshina et al.,
2020). However, we have chosen crystal structures as inputs for our study
as we believe that the far more accurate atomic locations, obtained from
electron density data, can give more meaningful physical interpretation.
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Hence, we have devised universal methods to filter distances in the pocket
that are statistically meaningful for binding from analysis of 180 ligand-

protein data sets.

Our objective is to simplify the analysis of protein-ligand complexes to
enable modification of their binding and hence their function. With more
than 140,000 X-ray structures in the Protein Data Bank (PDB) (Velankar
etal,2016), we also constructed a pipeline to decipher the information from
the PDB structural database, ChEMBL (Davies et al., 2015), OpenTargets
(Carvalho-Silva et al, 2019), KEGGs (Kanehisa & Goto, 2000), SAMUL
(Gong et al, 2011) as mentioned in the previous release of MANORAA
(Mapping Analogous Nuclei onto Residue and Affinity) (Tanramluk ez al,
2016).

With this new release, MANORAA.org has become an augmented
intelligent drug-design platform, by combining efforts from in-depth
analysis and the big picture. By the big picture route, our server provides
the information accumulated by the biological community, by tabulating
and linking data from major biological databases. This can be used to
harvest information for drug targets, since each ligand that can bind to the
protein is likely to affect that target protein in general. Baseline expression
of drug targets are shown in the form of either protein or RNA expression
in various target organs via OpenTargets (Carvalho-Silva ef al., 2019). The
user can infer how tightly a drug binds to a protein from BindingMOAD
(Benson et al, 2008), in order to analyze the molecular interactions between
the same ligand in different protein structures, so as to gain insights into
the most likely way to strengthen the binding affinity and avoid off-target
interaction. Structure-based superposition using ligand atoms from rigid
fragments provides information on conservation in the pocket, while the

machine learning algorithm provides information on the variation in the



pocket distances that affect the binding affinity. Thus, we can offer a robust
analysis platform for protein-ligand interaction to help understand the
selectivity required, not only in conventional structure-guided drug
discovery, but also in multi-target drug design and molecular design of the

probe (Frye, 2010; Workman & Collins, 2010).

In terms of drug design and probe-molecule design, our tool helps to devise
the rules on which parts of the ligand should be altered and how more atoms
may be designed to make the chemical compound bind more tightly to the
target protein. For a more challenging aim, such as multi-target drug
design, our approach can shed light on the interactions that govern trends
in binding affinity for a defined set of inhibitors. These aims can be
accomplished through our method if there is sufficient data available on
protein-ligand complexes and the associated binding affinity. The cloud
computing system provided enables machine learning in a centralized
platform that offers reproducibility of structural analysis, while keeping the
resulting hotspots of the small molecule structure secret by using
programmable URL. It allows agile analysis by calculation of the
influential distances on the fly, based on the customized set of atoms and
PDB structures provided by users. It also allows visualization of the

promiscuous parts that are crucial for ligand binding.

Our preliminary studies comprise superposition of tens of thousands of
amino acid residues and collection of information on the nature and
occupancy of the surrounding atoms on a grid (Tanramluk, 2005;
Tanramluk et al, 2009). The results support our idea that by intensifying
the signal to noise ratio in this manner, we can identify patterns of
interacting atoms around amino acids side chains. Therefore, we analyze
large numbers of crystal structures in complex with the same ligand,

superposing these structures on rigid fragment of the bound ligand. This



will allow dissection of the ensemble of protein atoms surrounding the
ligand into those that show differences or similarities in the pocket. Then,
we devise an algorithm to measure distances in all directions within the
protein pocket and find the trends in the relationship between distances and

binding affinities.

Objectives

1. To develop a machine learning platform to guide protein and
ligand design based on inter-residue distances

2. To prove the binding-distance correlation algorithms using
X-ray crystal structures of Plasmodial falciparum DHFR-TS in complex
with inhibitors

3. To prove the influence of the distance that relates to binding
affinity via enzyme kinetics of Staphylococcus aureus DHFR

4. To provide a rough sketch of the shape of Main protease active
site that may assist the design of SARS-CoV-2 main protease inhibitors



Methods

1. Overview of the web interface

The MANORAA platform is a starting point for gathering big data and can
serve researchers in several fields, such as chemical biology, protein
chemistry, biochemistry, molecular biology and computational biology
(Figure 1). The user can begin with various information, such as knowledge
of the chemical compounds or the protein, and use these to discover the
mechanism of action and drug side effects in organs. The platform can
provide users with various functions to perform an in-depth analysis at the
levels of protein-ligand interaction and structural analysis. Functions
include the retrieval of chemical fragments name and structural data,
pathway discovery and target discovery, molecular interaction analysis,
binding and distance correlation. Frequently occurring entities, such as
atoms or residues that retain their position relative to inhibitor, can be
viewed on the molecular visualizer via a unique URL, which is also
programmable to allow repeating analyses from the same user or for
sharing with colleagues. Searches using the common name of both
evidenced based drugs and traditional medicine compounds are permitted
by providing links to PDB 3-letter codes, which is the fastest way to obtain
big picture panels of each small molecule. These functions help the user to
start from the chemical fragment of interest and discover the target
pathways, as well as prospective organ involved in disease progression and
drug side effects. This is based on the assumption that the protein structure
in complex with the ligand is a reliable source of information to indicate
whether the ligands can bind to this target. Therefore, the website
comprises all the information that links the relational databases on
structure, based on unique identification numbers in various bioinformatics

databases, such as ChEMBL (Davies ef al., 2015), PDBe (Velankar ef al.,
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2016), OpenTargets (Carvalho-Silva et al., 2019), and KEGG (Kanehisa &
Goto, 2000). Each protein structure associated with the ligand can be used
to link to UniProt (The UniProt Consortium, 2020), which can provide the
amino acid sequence for all these PDB structures, and hence be linked to
protein expression levels and pathways. UniProt also linked out to Single
Nucleotide Variant which shows their disease causing SNPs. Other useful
information will include searching the ligand fragment that affect
biological pathways (KEGG) in humans, the tissues and organs where
associated proteins are highly expressed (OpenTarget’s RNA/Protein
baseline expression level). The UniProt allows linking to OpenTargets
(Carvalho-Silva et al., 2019) which has Ensembl ID (Howe et a/, 2021), so
they can link the PDB of the protein structure to the normal protein and
RNA expression levels in various tissues and organs, providing
information on possible side-effects of drugs. This linking of big data from
various databases decreases the amount of wet lab and animal testing
required. Protein-ligand interactions function is described in the methods,
results and discussion of our first MANORAA article (Tanramluk et al.,
2016).

2. Development of structural conservation function

The structural conservation button sent information consists of ligand
atoms and protein chains to invoke a Java module. The module was
developed using the Java 1.6 and BioJava version 4.0, which can superpose
the structure, binning the conserved atoms and colouring the conservation
of atoms as colour gradient, before sending the data back to the structure
visualization panel. Each PDB chains of all the structures was superposed
onto the template based on the set of input atoms that the user picked. This
method uses function SVDSuperimposer of BioJava to do atom

superposition. It accepts input atoms to be used for superposition from the
13



users. The default values were all the heteroatoms, but a more specialized
focus on rigid fragment atoms is recommended to improve the predictive
power for flexible ligand. PDB with the lowest affinity value is used as the
template for superposition. After all the structures were superposed based
on the ligand atoms, all the amino acid atoms surrounding the ligand atoms
are put into the bin according to its coordinate X, y, z, and atom types. The
four-dimensional array was created with bin size equal to 1A to collect all
the atoms near the grid. All bins with >50% of structures that have atoms
fall in were coloured. The numbers of atoms with highest frequencies to
lowest frequencies were used to normalize the gradient colours from
yellow to green to blue. The colours were generated by converting the
numbers of atoms into percentages to input into the Temperature Factor
column of the PDB file. The bin with the highest number of atoms will
have a temperature factor equal to 100. All the other bins, which do not
pass the 50% binning criteria, had their temperature factor set to zero. After
the temperature factor columns were created, the information for all atoms
were input as a new file, used to represent the conservation of atoms’ panel

with the JSmol visualization panel (JavaScript framework).

3. Development of binding-distance correlation function

All the user-selected PDB chain codes were used to superpose based on
ligand’s atom superposition using the function SVDSuperimposer of
BioJava packages. All conserved atoms and center atoms of amino acid
residues in the PDB chains are classified according to conserved atom
types and residue types (Tanramluk et al, 2009). A combined list of
conserved atom and residue bins were pooled and the residues and atoms
less populated than the cutoff were discarded. The conserved atom and
residue bins which are 100% populated were collected. The bin of

conserved entities was expanded 1 A at a time to fill the equivalent residue
14



numbers of all selected structures. The algorithm scans for more bins with
residues from every chain populated until reaching the maximum numbers
of the bins, which is 10% of the average number of residues from all PDB
chains. Center atoms from all the bins from each of the selected PDB files
were used for distance calculations to populate the distance descriptors
variable. The corresponding binding affinity values were used as
observable parameters for Partial Least Squares regression (PLS).
Variables were selected based on VIP (variable importance in the
projection) values (Chong & Jun, 2005) in multistep filtering until the final
set, and then the number of components giving lowest mean squared error
(MSE) was chosen. These will then be used for PLS regression. Python
3.5.2, NumPy, Pandas and Python’s Scikit-learn packages were used for
computation in this step. Selected variables were presented with the
influential distance in colours using NGL Viewer (Rose ef al, 2018). If the
coefficient is negative, the distance is shown in orange. If the coefficient is
positive, the distance is shown in green. The orange bar means favorable
in expansion for lower binding affinity (K;or K4 values) and the green bar
means favourable in contraction. The in vitro studies of Staphylococcus
aureus DHFR in complex with trimethoprim were provided to predict the

distances with improved binding affinities.

4. Experimental validation via SaDHFR kinetic studies

In order to construct a recombinant plasmid containing wide-type
SaDHFR, the SaDHFR DNA fragment was PCR-amplified from genomic
DNA of S. aureus subsp. aureus Rosenbach (ATCC) using specific primers
and Phusion™ High—Fidelity DNA Polymerase (Thermo Scientific™).
The amplified product was analyzed on agarose gel electrophoresis and

purified by wusing GenepHlow™ Gel/PCR Kit according the



manufacturer’s protocol (Geneaid). The DNA fragment was cloned into the
expression vector pET-17b (+) using the Ndel and EcoRI restriction sites
to generate the recombinant plasmid. The recombinant plasmid was
propagated in Escherichia coli DH5a and purified by High-Speed Plasmid
Mini Kit (Geneaid). The mutant SaDHFRs were created by site-directed
mutagenesis. Wild-type and mutant SaDHFRs were expressed in E. coli
BL21(DE3). The cells were grown in Luria-Bertani medium supplemented
with 100 pug/ml ampicillin at 37 C, 250 rpm until optical density at 600 nm
reached ~0.8. The protein expression was induced using 0.5 mM isopropyl-
[S-D thiogalacto-pyranoside (IPTG). The cells were incubated for 6 hours
at 30°C after IPTG induction, and harvested by centrifugation (4 C, 20 min,
11,300xg). For protein purification, cell pellet was re-suspended in lysis
buffer (50 mM sodium phosphate pH 8.0, 200 mM NaCl,10 mM
imidazole), lysed by sonication, and centrifuged (4 C, 20 min, 27,200xg).
The clarified cell lysate was incubated with nickel-nitrilotriacetic acid (Ni-
NTA) agarose beads (Qiagen) at 4 C for 45 minutes. After incubation, the
mixture was transferred to a gravity column and washed with 50 mM
sodium phosphate pH 8.0, 200 mM NaCl, 20 mM imidazole. SaDHFR
proteins were eluted from Ni-NTA column using 50 mM sodium phosphate
pHS8.0, 200 mM NaCl, 250 mM imidazole. The enzyme was then
exchanged into storage buffer (20 mM Tris-HCI pH 8.0, 20 % (v/v)
glycerol, 0.1 mM EDTA, 2 mM f-mercaptoethanol, 50 mM NaCl) using
dialysis. The enzyme was quantified by absorbance at 280 nm using molar
extinction coefficient of 15,470 Mcm™ as calculated by the ExXPASy—
ProtParam tool before flash freeze and storage at -80°C. DHFR activity
was assayed by monitoring the rate of oxidization of NADPH at 340 nm,
at 25°C for 3 minutes in 1 ml reaction. The concentrations of DHF and
NADPH were determined using €50 = 28,000 M™! cm™!, and €349 = 6,220

M em, respectively (Penner & Frieden, 1987). For the determination of
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K.PHF the concentration of NADPH was fixed at 100 uM and the
concentration of DHF was varied between 3.12-100 pM. For
determination of K,"*P"!, the reaction with 100 uM DHF was titrated with
3.12-100 uM of NADPH. The total enzyme concentration used in steady-
state kinetic studies was 14 nM. The reaction was started by addition of
DHF after a 1-minute preincubation. Enzyme inhibition assay was
performed under the same steady state kinetics condition. The
concentrations of trimethoprim inhibitor (dissolved in DMSO) were varied
from 0—10 nM at different fixed concentrations of DHF. The reaction was
started by DHF and TOP after a 1-minute preincubation. The Lineweaver-
Burk plot of 1/V vs. 1/[DHF] at various TOP concentrations yielded a
family of straight lines that share a common Y-intercept, which is
characteristic of competitive inhibition. The inhibitory constant (K;) was
extracted by using secondary replot of the slope from the Lineweaver-Burk
plot vs. the concentration of TOP, where the X-intercept indicates the (—K;)

value.

5. Structural validation of PfDHFR-TS and influential
distances

The Plasmodium falciparum DHFR-TS (P/DHFR-TS) was expressed,
purified and crystallized as described previously (Chitnumsub et a/, 2004;
Yuvaniyama et al, 2003). Briefly, the enzyme (15 mg mL™) was co-
crystallized with 2 mM each of NADPH, dUMP and either methotrexate
(MTX) or trimethoprim (TOP) using a microbatch technique. Crystals
grew in 0.1 M NaOAc, pH 5.0, 0.14 M LiCl,, 14% (w/v) PEG3350 (for
TM4/MTX) and 0.08 M NaOAc, pH 4.6, 0.8 M NH4OAc and 28% (w/v)
PEG4000 (for K1/TOP). A single crystal was harvested into a crystallizing

solution containing 20% (v/v) glycerol as a cryoprotectant and flash-frozen



in liquid nitrogen. For TM4/MTX, data were collected at beamline
BL13B1 at NSRRC (Taiwan, ROC) and processed using HKL2000
(Otwinowski & Minor, 1997). For K1/TOP, data were collected on
Rigaku/MSC RU-H3R rotating anode generator (50 kV, 100 mA) equipped
with Osmic Confocal Maxflux multi-layer optics and an R-Axis IV image
plate area detector and processed with CrystalClear/d*TREK (Pflugrath,
1999). MOLREP was used for molecular replacement (Vagin &
Teplyakov, 2010) from the CCP4 suite (Winn ef al, 2011). The wild-type
TM4 (PDB ID: 3QGT) (Vanichtanankul ef a/, 2011) and K1 mutant (PDB
ID: 1J3J)) (Yuvaniyama et al., 2003) of PDHFR-TS complex structures
were used as the search models for TM4/MTX and K1/TOP data,
respectively. Structures were refined using REFMAC (Murshudov et al,
2011) and built using Coot (Emsley et al/, 2010). Final structures were
validated using SFCHECK (Vaguine et al/, 1999). Data collection and

refinement statistics are shown 1n Table 1.

The details of binding affinity prediction from the P/DHFR-TS influential
distances obtained from trimethoprim are described in Table 2 & Table 3 and

methotrexate complexes are described in Table 5 & Table 6.



Table 1.Data collection and refinement statistics of the ternary complexes of PfDHFR-TS WT (TM4)
and double mutant PfDHFR-TS (K1, C59R+S108N).

TM4/MTX/NDP/dUMP K1/TOP/NDP/dUMP
Data collection
Wavelength (A) 1.5418 1.5418
Space group P21212, P21212,
Unit-Cell Parameters
a, b, c(A) 56.678, 154.403, 164.165 56.332, 153.739, 164.119
o, B,y (®) 90, 90, 90 90, 90, 90
Resolution® (A) 50-2.25 (2.33-2.25) 39.75-2.6 (2.7-2.6)

Total reflections
Unique reflections
Completeness (%)
<l/o(l)>

Rierge (%)"

Refinement
Rywort/ Rfree (%)C
No. of Atoms/Average B-
factors (A%) molA, molB
Protein
Inhibitor

NDP
dUMP
Glycerol
Waters
R.m.s. Deviations
Bond lengths (A)
Bond angles (°)
Ramachadran Plot
favored regions (%)
allowed regions (%)
outliers (%)

442,998
66,360
96.9 (92.9)
22.8 (3.3)
7.4 (48.8)

18.22 (23.29)

8936/41.4, 8922/49.4
53/31.8, 53/59 (in DHFR)
53/69.8 (in TS)

71/29.8, 71/66.1

30/35.7, 30/54.4
12/44.3,12/42.9
546/37.75

0.0095
1.613

94.08
4.53
1.39

182,523
43,724
97.0 (79.5)
10.1 (2.4)
8.3 (31.4)

19.79 (25.31)

8964/60.8, 8964/66.8
39/48.3, 39/66.8

71/69.1, 71/104.3
30/81.6, 30/80
12/52.9, 12/65.4
194/46.2

0.0077
1.602

93.73
4.98
1.29

2Values in parentheses are for the highest-resolution shell.
5 Rinerge = ZnkiZilli(hkl) — {I(hkD))|/ZnaZili(hkl), where Ii(hkl) is the intensity of an individual reflection

and (/(hkl)) is the mean intensity of symmetry-equivalent reflections.

*Rywork = Znkl||[Fobs| = |Fealce||/Znki|Fobs|, Where Fops and Flalc are the observed and calculated structure-
factor amplitudes, respectively. Re. was calculated in the same manner as Ryork but using only a 5%
unrefined subset of the reflection data.



Table 2. Binding affinity calculation from influential distance of K1 PfDHFR-TS crystal structures in
complex with trimethoprim, Related to Figure 6 & Table 3

Binding affinity for TOP in P. falciparum DHFR-TS
Calculation (PDB ID: 7F32) iTIBursatF; glt?;:
predicted Kinetic experiment
(pred) (exp)
LogyoKi, TOP(pred)
='31 .3940 - 4.2142 x Log,oKi, TOP(exp)
Log;,Ki, TOP Distance(lle14:Ala16) =Logs(0.00362) Figure 6
= 31.3940-(4.2142 x 8.123048381) = -2.4413
= -2.8382
Ki, TOP(pred) = 104-2.838150487) |Ki,TOP(exp) =3.62 nM;
Binding Affinity = 0.0014516 micromolar; or N/A
(Ki,TOP) 1.4516 nM 0.00362 micromolar

*Remark: Residues for TOP's influential distance measurement in S.aureus DHFR is in brackets
LogqoKi = 31.3940 - 4.2142 x Distance(Leu5:Ala7)

Equat

ion 1

From PfDHFR-TS with TOP crystal structures (PDB ID: 7F3Z), the X, y,z coordinates that are equivalent
to those from SaDHFR can be used to calculate distances as follows.

S.aureus
DHFR Solved 7F3Z
3FRE.pdb  PfDHFR-TOP % y
residues residue
LEU5S ILE14 (CB)
ALA7 ALA16 (CB)
Distance

-2.791 -0.275 | -55.141
-3.226 | 7.834 | -54.944
8123048381

A

Table 3. Experimental versus predicted binding affinity and influential distances from DHFR structures
with TOP to show predictive power, related to Figure 6 and Table 2

. \ Experiment Predicted

A Distance (B7, B)™.. 0P [Log,,Ki. TOP| LogoKi, TOP| Ki, TOP
3FRE 8.024023554 0.0006| -3.22184875| -2.420840063| 0.003794547
2W9G 7.980840683 0.00097| -3.013228266| -2.238858804| 0.00576954
3FRB 7871374594 0.1724] -0.763462739| -1.777546814| 0.016689879
4G8Z 7.366680528 0.227] -0.643974143| 0.349334919| 2.235295374
2W9H 7.83215328 0.43| -0.366531544| -1.612260352| 0.024419662
3S3V 7420398237 0.593| -0.226945307| 0.122957748| 1.327265325
3NOH 7413157829 0.617] -0.209714836| 0.153470276| 1.423869792
2W9S 7.501040195 0.73| -0.13667714] -0.216883588| 0.606898986
4KM2 7.258988979 0.82] -0.086186148| 0.803168644| 6.355776895
1DYR 7.290275578 20| 1.301029996| 0.67132066| 4.69159657
1DG5 7.273849394 88| 1.944482672| 0.740543886| 5.502295187
7F3Z

K1 Pf-DHFR-TS &| 8.123048381 0.00362| -2.441291429| -2.838150487| 0.001451609
TOP
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Table 4. Binding affinities calculation for MTX in complex with DHFRs from various species

(Top) Input binding affinity data from MANORAA, retrieved from BindingMOAD. (Bottom) Structural
alignment for MTX-DHFRs and the output equation (Equation 2) to predict the trend of binding
affinity values from influential distances. The same method was applied for empirical studies of 180
ligand-protein complexes (Table 9) with mean R? = 0.908
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a1 1 & 5f 47 wirimn
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Table 5. Binding affinity calculation from influential distance from TM4 PfDHFR-TS crystal structure

in complex with methotrexate, Related to Figure 7, Table 6

Data _Graphl?al
illustration
Input proteins DHFR in complex with methotrexate from various species
Input ligand MTX
Inout atoms N1, N3, N5, N8, N10, NA2, NA4, C, C2, C4, C4A, C6,
Inout P C7,C8A, C9, C11,C12,C13,C14, C15,C16,CM
npu Template structure 1U72.pdb
':'[’;I‘; Is;r”cmres 1U72, 2DRC, 1RG7, 3DRC, 3DFR, 3IX9, 1DLS, 1DF7,
i 2QKS, 3EIG, 1DHI, 1U70, 1DHJ
(all Chain A)
Use this URL Table 4
Output
Influential distance LogoKi, MTX = 8.2741 -2.6172 x Distance(B4,B12)
equation for MTX
Predicted
influential Log;oKi, MTX = 8.2741 - 2.6172 x Distance(Glu30:Thr136)
distance equation .
in human DHFR — Faquation2
numbering
Prediction _ LogoKi,MTX(pred) =8.2741- 2.6172 x Distance(Asp54:Thr185)
by Predicted = 8.2741- (2.6172 x 4.313702586)
influential | Binding Affinity in Log1Ki,MTX(pred) = -3.015722408
. PfDHFR-TS & MTX
distance .
(pred) (PDB:7F3Y) Ki, MTX(pred) = 0.000964 micromolar; or 0.96 nM Figure 7
Proven
by kinetic Ki, MTX in Ki,MTX(exp) = 0.20 + 0.03 nM; or 0.0002 micromolar
experiment | TM4 PfDHFR-TS Log1oKi,MTX(exp) = -3.69897
(exp)
Remark:
Solved 7F3Y
Human DHFR PfDHFR-TS
residue
GLU30 ASP54 (CG)
THR136 THR185 (CB)

Distance

V((XoX1)?4(y Y1) H(Z2-21)?)

4.313702586 A
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Table 6. LogioKi, MTX used for binding affinity calculation from influential distance in crystal
structures of DHFR in complex with MTX, Related to Figure 7 and Table 5

rarget Protein|  ppp | BINding Affinity | KIMTX | Distance | Log;oKi,MTX LogsoKi,MTX
(micromolar) (nM) (B4,B12) (pred) (exp)
micromolar

DYR_HUMAN 1U72 0.0000034 0.0034| 4.164948739| -2.62640384| -5.46852108
DYR_ECOLI 2DRC 0.00013 0.13 4.1888052| -2.688840968| -3.88605665
DYR_ECOLI 1RG7 0.0007 0.7] 4.111393195| -2.486238269| -3.15490196
DYR_ECOLI 3DRC 0.0007 0.7 4.190847886| -2.694187086| -3.15490196
3DFR 0.003 3| 4.416147416| -3.283841017| -2.52287875

DYR_STRPN 31X9 0.0039 3.9] 4.034426601| -2.284801301| -2.40893539
DYR_HUMAN 1DLS 0.0109 10.9| 4.018967405| -2.244341492| -1.9625735
1DF7 0.011 11| 4.087547676| -2.423829776| -1.95860731

2QK8 0.02 20 4.15034095| -2.588172334 -1.69897

DYR_HUMAN 3EIG 0.021 211 4.101166785| -2.45947371| -1.67778071
DYR_ECOLI 1DHI 0.055 55| 3.529805094| -0.964105891| -1.25963731
1U70 0.23 230| 4.169463994| -2.638221166| -0.63827216

DYR_ECOLI 1DHJ 0.281 281| 3.527337381| -0.957647394| -0.55129368

TM4
PfDHFR-TS TF3Y 0.0002 0.2| 4.313702586( -3.015722408 -3.69897
& MTX

**Use the text colour on the first column as seen on Figure 7 plot.

6. Kinetic Analysis for PfDHFR-TS

DHFR activity was determined spectrophotometrically by measuring the
rate of reduction of NADPH at 340 nm using €34 of 12,300 M-'cm’!
(Hillcoat et al, 1967). Briefly, steady-state kinetics studies were performed
using 6—10 mU of purified enzyme in the standard reaction (I mL) of
1xDHFR buffer (50 mM TES, pH 5.0, 75 mM 2-mercaptoethanol and 1
mg mL"' BSA) containing 100 uM each of DHF and NADPH. Michaelis-
Menten constant (K,,,) was determined by varying either DHF or NADPH.
The K, value was calculated using non-linear regression with
KaleidaGraph 3.51 (Synergy Software, Reading, PA, USA) by fitting data
to the Michaelis-Menten equation. The inhibition constant (Kj) was
performed in 200 puplL  reaction as described previously

(Kamchonwongpaisan ef al, 2020). The K; value was calculated using non-
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linear least square equation for competitive inhibitor using KaleidaGraph

3.51 and used in the form of Log;(K; that was obtained experimentally.

7. Favorable distance from binding affinity calculation of
SaDHFR-TOP

We developed a model to predict a set of highly influential descriptors
(inter-residue distances) of the inhibition constant (K;) for trimethoprim
(TOP) on dihydrofolate reductase (DHFR). The distance between Leucine-
5 and Alanine-7 (Drs.a7) exhibits the most linear influence on Log;oK; top.
We proceeded with a set of rounds, running Partial Least Squares
regression (PLS) using the program XLSTAT to estimate the best-fitting
model, with the most probable explanatory variables or descriptors.
Variables with less importance were filtered-out and the remaining
variables were subsequently passed on to the next round of running until
yielding the minimal number of variables. The model’s predictive quality
is measured by the Q? cumulative index (Q*cum), which involves the cross-
validation and sum of squares of errors. In this study, we chose the cross-
validation method of Jackknife leave one out (Jackknife LOO) (95%
confidence interval) to validate the regression, and assigned the sum of
squares of errors to be the minimum measure of predicted residual error
sum of squares (minimum PRESS). The standardized coefficients enable
us to weigh the descriptors in model, with the mathematical sign of each
item suggesting the direction of the represented distance. The final Q* cum,
given the yielded variables, is still greater than zero, which indicates that
the final model is validated and independent from the training data. The
mathematical sign of coefficients from the model suggests the distance
Dvys.a7 as a negatively influential distance to the LogoKi top; in other words,

the longer the distance Dy s.a7, the lower the Ki,top. To generalize the result
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from PLS to research, we observed the suggested distances from the
structure (PDB: 2W9G) in the Staphylococcus aureus DHFR to depict and
justify how the amino acid residues and their inter-residue distances affect
the binding to trimethoprim. The observation of the active site suggests that
the width between the amino acid residues Leucine-5 and Alanine-7 shows
the most potential importance for trimethoprim (TOP) binding;
consequently, this suggests further investigation at the Leucine-5 to Valine

(Figure 5).

The detailed calculation for this analysis is shown in Table 8. Our algorithm
further analyses the effects of various distance directions and identifies
distances that are most often to be found proportional or inversely
proportional to Log;oK;. By understanding trends inside the pocket, we
should be able to predict the direction and the desired distance to be
expanded or contracted in order to decorate either the protein or the ligand

to bind more tightly to one another.

Table 7. Structural alignment and distance-binding affinity relationship for TOP-DHFR (Equation 1)
are obtained by using the pyrimidine-2,4-diamine ring and the linker's input atoms as the rigid
fragment from trimethoprim and their PDB files (Table 8).

Ligand: TOP

Atom: N2, N4, N5, N7, €1, €3, C6, €8, C9, C10
Template: 3FRE

Structure:
PDB: 3FRE Chain: X PDB: 3S3V Chain: A PDB: 1DG5 Chain: A
PDB: 2W9G Chain: A PDB: 3NeH Chain: A
PDB: 3FRB Chain: X PDB: 2W9S Chain: A
PDB: 4G8Z Chain: X PDB: 4KM2 Chain: A
PDB: 2W9H Chain: A PDB: 1DYR Chain: A
PDB Bl B2 B3 B4 B5 B6 B7 B8 B9 B1@ B11 B12 B13 B14 B15 Bl6

1DG5 ALA-7  ASP-27 (YS-11@ GLN-28 GLU-111 HIS-3@ ILE-5 ILE-94 LEU-4 PHE-31 SER-155 THR-113 TRP-6 TYR-100 TYR-154 VAL-112
1DYR ALA-12 GLU-32 ILE-141 ILE-33 MET-142 TYR-35 ILE-1@ ILE-123 LEU-9 PHE-36 MET-201 THR-144 VAL-11 TYR-129 GLU-28@ ALA-143
2W9G ALA-7  ASP-27 MET-1@8 LEU-28 TYR-1€9 HIS-3@ LEU-5 PHE-92 ILE-4 VAL-31 HIS-153 THR-111 VAL-6 PHE-98 LEU-152 ILE-11@
2W9H ALA-7  ASP-27 MET-108 LEU-28 TYR-1@9 HIS-3@ LEU-5 PHE-92 ILE-4 VAL-31 HIS-153 THR-111 VAL-6 PHE-98 LEU-152 ILE-11@

2W9S ALA-7  ASP-27 MET-108 LEU-28 TYR-1@9 HIS-3@ ILE-5 PHE-92 ILE-4 ILE-31 HIS-153 THR-111 VAL-6 TYR-98 LEU-152 ILE-11@
3FRB ALA-7  ASP-27 MET-108 LEU-28 TYR-1@9 HIS-3@ LEU-5 PHE-92 ILE-4 VAL-31 HIS-153 THR-111 VAL-6 TYR-98 LEU-152 ILE-11@
*3FRE  ALA-7  ASP-27 MET-1@8 LEU-28 TYR-109 HIS-3@ LEU-5 PHE-92 ILE-4 VAL-31 HIS-153 THR-111 VAL-6 PHE-98 LEU-152 ILE-110
3NeH ALA-9 GLU-30 LEU-133 PHE-31 PHE-134 TYR-33 ILE-7 VAL-115 CYS5-6 PHE-34 VAL-181 THR-136 VAL-8 TYR-121 GLU-18@ VAL-135
353V ALA-9 GLU-30 LEU-133 PHE-31 PHE-134 TYR-33 ILE-7 VAL-115 CYS5-6 PHE-34 VAL-181 THR-136 VAL-8 TYR-121 GLU-18@ VAL-135
4G8Z ALA-12 GLU-32 TILE-141 ILE-33 MET-142 TYR-35 ILE-1@ TILE-123 LEU-9 PHE-36 MET-201 THR-144 VAL-11 TYR-129 GLU-280 ALA-143
4KM2 ALA-7  ASP-27 (YS-118 GLN-28 GLU-111 HIS-3@ ILE-5 ILE-94 LEU-4 PHE-31 SER-155 THR-113 TRP-6 TYR-180 TYR-154 VAL-112

Influential Distance:
LogleKi = 31.3948 -4.2142xD(B7,B1)

1DG5 1DYR 4KM2 2W9S 3NeH 3S3V 2WoH 4G8Z 3FRB 2W9G 3FRE
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Table 8. Trimethoprim binding affinity calculation to prove that influential distance equation can be
used for improving Ki,TOP in SaDHFR, Related to Figure 4, Figure 5 & Table 7.

Data .Graphu.:al
illustration
Input proteins DHFR in complex with trimethoprim from various species
Input ligand TOP
Inout Input atoms N2, N4, N5, N7, C1, C3, C6, C8, C9, C10
npu -
Template structure 3FRE.pdb
Input structures 1DG5(A), 1DYR(A), 2W9IG(A), 2W9IH(A), 2W9IS(A),
PDB ID(chain) 3FRB(X), 3FRE(X), 3NOH(A), 3S3V(A), 4G8Z(X), 4KM2(A)
Use this URL
Output Table 7
Influential distance . .
equation for TOP Log oKi = 31.3940 - (4.2142 x Distance(B7,B1))
Pf’f‘j‘d_itc"?d binding Log:oKi = 31.3940 - 4.2142 x Distance(Leu5:Ala7)
affinity in . o . ) )
S.aureus DHFR This coefficient is negative, the Ion‘geé)the distance L5:A7,
sequence the lower Log4Ki, TOP.
Experimental prove Site-directed mutagenesis at L5V can improve Ki,TOP in Fi 5
P P S.aureus DHFR from 6.2 + 0.62 Mo 3.5 + 0.92 nM. qure
v Valine is shorter than Leucine, hence the pocket can be D.IStal’.]CG
Implication ) . . direction
expanded to get longer distance in the pocket for better Ki. in Figure 4

8. Empirical studies of influential distance equation

A machine learning algorithm is used to generate a prediction model with
a significant number of binding data (K; or K4) available as PDB data on
the latest CREDO database 2016 (Schreyer & Blundell, 2013). The
rationale was to use the inter-residue distances harvested from frequently
occurring atoms and residues for constructing the equations that can predict
the majority of K; or Ky data via distances alone. The protocols for
generating the models are the same for all families of PDB chains included.

The primary goal was to find general solutions where distance is most
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influential to the binding affinity values. Similar methods to variation parts
previously mentioned were applied to all ligands with associated K or Kq
less than 70,000 uM and having more than 3 structures in the PDB. From
22,506 PDB ligands, 22,252 ligands do not pass the criteria of more than 3
structures with K; or K4. PLS cannot process 74 ligands for the following
reasons €.g., no heteroatom for selection, atom sets of ligands differ and
cannot be superposed, no conserved atom and residue bins, and K; or K4
having same value for all structures. The Partial Least Squares (PLS)
method was applied to give a model equation from the distances inside the
pockets. For each of the 180 data sets obtained, all of the heteroatoms of
their ligand were selected for superposition to obtain frequently occurring
neighboring entities for distance measurements. All the frequently
occurring atoms and residues in the bin were used to refer to distinctive
part of the residues to generate the distance table. The obtained inter-
residue distances as independent variable with binding affinity values
(Logi0K) as dependent variables were subjected to the PLS regression as
described in the binding-distance correlation function section. Multistep
VIP (variable importance in the projection) values were filtered to choose
the distances that are the determinants of binding affinity. The maximum
number of output distance variables used for constructing the PLS models
1s limited to three parameters or less to minimize the equation’s
complexity, overfitting, and probability of matching by chance. The cross-
validation method was applied and all the most important distance
descriptors obtained were called influential distances. The same techniques
were applied to ligand-protein structures with binding affinity values, and
the distances were drawn on the structures, with a button available for
viewing these distances and their directions, obtained from the equation on
the template PDB file in the last column of Table 9. The obtained R? values
were used to estimate the agreement between the experimental and
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predicted binding affinity according to their PDB’s 3-letter codes. The final

results comprise 180 sets of ligands (n=180) with predictive power, i.e.

mean R? of 0.908, median R?0.996 and standard deviation (SD) 0.182.

Table 9. Empirical studies of influential distances obtained from superposition of heteroatoms of
PDB ligands with visual inspection URLs and links to each data set, Related to Empirical studies of
influential distance equation under quantification and statistical analysis of the methods.

Ligand

GIM
om7
upP
ADN
PYR
4C0
OAN
CP&
PBD
Qus
BES
DCM
MNAI
ANH
0Q4
PHB
149
TPV
s2C
UPG
MoT
G39
9PL
STU
G3G
PGH
PRZ
XCG
JE2
FCB
PEP
EZL
065
GBN
CHT
usp
13P
ACO
E1F
OXL
NBB
4P
DR7
25T
GDP
IMP
KAl
MCF
TOP
WRA
478
CIT
ADE
MTX
DYH
GRO
LP1
TFB
BB2
393
GTX
cou
BMP
DP1
AB1
SUE
G4G
APR
120
2NC
GSP
puP
LOP
EQU
696
SPD
OLA
DH1
FB2

0.3416
0.9377
0.9985
0.4834
0.7633
0.2635

0928

1
0.9337
1

1

1
06823
0.9807
07101
0.9876
049762
09882

0.965
0812

0.9975
0.9814
0.5227
0.9943

0.9996
0.9994
0.9804

0.8468
1

0.9992
0.9894
0.8696
0.9456

04794
0.9994
0.8635
0.8554
0.8136

0.9976
0.9534

1
06358
1

Structures

2

o=

NUDEOWWDE RPN WRE A RN, DU NN BN EWDW N, NN AN, RAE PN RW AN AW AN RUANWNWNNWDOO DN w

LogyKi
-1.2757
-4.9626

15051
-26383
-0.5686
-26676
-3.0069
-3.7959
-1.0223
-1.3768
=1.7447
-0.3098
-4.0177

1.266
-1.8629
-0.1549

10792
-5.0069
-0.5686

-1
-2.5686
-3.6383

1.6902
-3.4815
-0.8928
-1.6757
-05229
-2.0458
-4.4815
-0.4550
-1.3879

-3
-3.5686

3.1139

0.4314

1.1461
-4.0458

0.3802
-1.9547

06021
-1.6283
-15686
-4.4559
-1.5220
-5.0269

16632
-1.1898
-6.3188
-32218
-4.9586
-38239

30792

-3
-5.4685

-3.301

20034

-2.699

2301
-3.5628
13978

0.1139
-0.5686
-5.0565
-0.5220

-5.301
-3.8620
-1.4437

0.699
1.2041
-1
-0.1612
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Table 10. Limitation of the method presented using Median of R2vs number of structures

Structures | R? median Area Decreasing R? as the structures increase
3 1| 0.998325 1
4 0.99665 | 0.984825 0.9
5 0.973 0.9304 0.8
6 0.8878 | 0.88035 0.7
7 0.8729 | 0.764575 06
8 0.65625 | 0.69845 '
9 0.74065 | 0.746975 05
10 0.7533 | 0.71345 04
11 0.6736 | 0.62065 03
12 0.5677 | 0.496525 0o
13 0.42535 | 0.297775 o1
14 0.1702 | 0.20065 '
15 0.2311 2.00445 ©
22 0.3416 | 0.4016 | ° 1 »
24 0.06
Area Under Curve 10.739

This graph is a disclosure of the limitation of this tool, since we want
to provide transparency of the system. We offer the reader this insight, so
that it will allow other researchers to consider whether they can improve
the method further, by adjusting input atoms and making a careful distance
and binding affinity measurements. Our default setting of only heteroatoms
selected suggests that the method can be generalized. There is a clue from
R? statistics in this Table 9 that the distance and its influence on Ki can be
seen in various superposition settings, as shown by the agreement of the
majority distance data sets, filtered by the same procedure (median R
0.996 and mean R? 0.908). If the user can provide more superimposable
atoms as input, most of the low R? values can be increased. Although, our
results still have a limited number of data points, they have potential to be
used as a guideline for similar studies and for use as a baseline for other
researchers. More carefully conducted data from a series of crystal
structures with corresponding binding affinities, will provide good quality
data points and better prediction accuracy, facilitated by MANORAA
algorithms.
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Results & Discussion

1. Conserved parts of protein-ligand complexes

In terms of drug design based on the lock and key concept, the web server
can dissect the protein surrounding the ligand into regions of similarity and
difference. The similarity data, based on frequently occurring atoms and
residues, can be collected from the grid-based superposition of a large
number of protein structures in the same homologous family. These grid-
based superpositions of the user-selected PDB codes provide information
on which parts of the protein are conserved and required for ligand design.
These conserved parts act as a pivot point to interpolate to the part of the
ligand fragment that should be maintained inside the core of the structure.
This process can be automated by programming to superimpose numerous
proteins that bind to a similar ligand, especially on the user-provided rigid
fragments. The parts that always retain the same information for both type
and position can be binned using a grid box. The outcomes are displayed
in a series of gradient colors from blue to yellow, based on the frequency

of entities that are populated inside the grid box (Figure 2 & Figure 3).

\ -
-k 7 >

Figure 2. Structural conservation represented as a gradient in color from yellow to green to blue to
visualize the occurrence of conserved residues.
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Figure 3. Density display of the distinctive parts of conserved residues that frequently occur. After
normalization, they are used for creating the gradient-color pictures (left). All the distances plotted
between conserved atom pairs in the bin are then filtered and included in the protein-ligand distance
binding affinities correlation model (right).

Superposition of protein-ligand complex structures based on the ligand’s
rigid parts revealed certain protein atoms that retain their positions in more
than 75% of the cases for the kinase and for the dihydrofolate reductase
data sets. Those positionally conserved entities in the pocket can be used
as reference points to guide where atoms inside the pocket should retain
their positions during synthesis. Since these points represent atoms that
remain in the same position in the majority of the structures, they are likely
to have preferable molecular interactions with the ligand and be well
preserved. These frequently occurring entities are illustrated for protein

kinase (Figure 2 & Figure 3) and dihydrofolate reductase.

This phenomenon is observed in several sets of proteins, such as the folate
binding residue in dihydrofolate reductases and the hinge region in kinases,
as in the sample data by selecting the “Structural Conservation” button

from URLs

http://manoraa.icbs.mahidol.ac.th/Manoraa/ligand/MTX and

http://manoraa.icbs.mahidol.ac.th/Manoraa/ligand/STU respectively.
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The last three letters of these URLSs can be replaced by any ligand’s PDB
3-letter codes that are available in CREDO (Schreyer & Blundell, 2013).

2. Variation parts that related to binding affinity values

Another aspect that relates to the binding constant, which tells how the
drugs can be improved for efficiency, is based on correlation between the
inter-residue distances and the binding affinities. We observed that
distinctive parts of the amino acid residues, mostly at the penultimate atoms
(Tanramluk et al., 2009) can be used as points for distance measurement,
which can be used to train Partial Least Squares algorithms. This can result
in model equations that describe the relationship between binding affinities
and distances with high accuracy (mean R?>> 0.9). We also show in detail
that these distances can be used to improve the value of binding affinities
of Staphylococcus aureus DHFR (Dale et al, 1993) with trimethoprim. The
obtained binding affinity equation for K;rop when setting rigid fragment

atoms at pyrimidine-2,4-diamine ring and the linker can be found in Table 8.

The model equation generated from clicking “Binding-Distance
Correlation” button of

http://manoraa.icbs.mahidol.ac.th/Manoraa/liecand/TOP is:

LOgIOKi,TOP =31.394 — 4-2142XD(Leu5,Ala7) (Equation 1)

in S. aureus DHFR

Reverse engineering the distance of the amino acids inside the protein S.
aureus DHFR by site-directed mutagenesis suggest that binding affinities
(Ki,ror) can be improved from 6.2 £ 0.62 nM to 3.5 £ 0.92 nM by mutating
from leucine to valine (L5V) to expand the pocket in the direction that is
proportional to the largest coefficient by deducting the size of amino acid

(Figure 4, Figure 5, Table 7).

33


http://manoraa.icbs.mahidol.ac.th/Manoraa/ligand/TOP

Figure 4. The orange bar is drawn between SaDHFR's residues Leu5 and Ala7, which is the favorable
expansion distance based on the coefficient of the independent variables in Equation 1 that results
in a lower Kitor for SaDHFR (proved in Table 8).
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Ki,TOP (nM)
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Figure 5. Bar graph representing Ki,tor of wild-type (WT) and mutant SaDHFR (L5V, L5M, A7S, A7G).
The x-axis is the type of mutation and the y-axis is the Ki value of trimethoprim (K; ,TOP). The data
are presented as mean t standard error of the mean (n= 3). The L5V mutation suggested
by (Equation 1) can improve the SaDHFR binding affinity to trimethoprim by 2-fold (Table 8).

34



The blind test with X-ray crystal structure of K1 Plasmodial falciparum
dihydrofolate reductase-thymidylate synthase (P/DHFR-TS) in complex
with trimethoprim (TOP) (PDB ID: 7F3Z) results in Ki,rop prediction of
1.45 nM while the experimental Ki,rop was 3.62 nM (Table 2). Therefore,
this distance in crystal structure results in acceptable prediction of

trimethoprim binding affinity (Figure 6, plotted using data from Table 3).

R N W B

o
O
HI's
S
o2
O

(predicted)

4 -3 -2 - 1 2 3 4
ol log Ki,_TOP
) (experiment)

Figure 6. Predictive power of the influential distance equation for Ki,tor in complex with K1 mutant
of PfDHFR-TS (red circle, Table 2 and Table 3).

Although not all the S. aureus DHFR mutated residues conform to the
equation, the results showed that our algorithm could indicate, at least
once, how the binding affinity can be computationally improved by two-
fold (Figure 5), which was subsequently confirmed by kinetics studies of

purified S. aureus DHFR (Dale et al., 1993; Thampradid, 2016).
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We also validated the distance from crystallographic studies of wild-type
Plasmodium falciparum dihydrofolate reductase-thymidylate synthase
(P/DHFR-TS) (Yuvaniyama et al., 2003) with methotrexate (MTX) to see
how the generated model built from Partial Least Squares regression
(PLS) of influential distances from 13 DHFR structures can predict Kjina

novel protein-ligand complex structure (Table 5).

The model equation was

L0g10Ki,MTX: 8.2741-2.61 72XD(Glu30,Thr136) (Equation 2)
in Human DHFR or equivalent in other species.

The solved X-ray structure of PADHFR-TS in complex with MTX was
used to blind test the influential distance obtained from the structure and
put back into the equation (PDB ID: 7F3Y). The predicted binding
affinity values calculated from distance (4.314 A) between Asp54 and
Thr185 in X-ray structure of PA/DHFR-MTX complex with the
MANORAA'’s equation was 0.96 nM while the Kimrx of PADHFR-TS
from kinetic experiments was 0.20 &+ 0.03 nM (Table 5). If the DHFR data
from mouse are excluded, the trend of the binding affinity from
prediction using influential distances in crystal structure of P/DHFR-TS
MTX corresponds well with the experimental data, as can be seen in red

circle located on the trend line (Figure 7, plotted using data from Table 6).
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Figure 7. Predictive power of the influential distance equation to calculate Kimrx in TM4 PfDHFR-TS
(red circle,Table 5 & Table 6). The x-axis is the experimental binding affinity value and the y-axis is
the predicted binding affinity value calculated by influential distances. The dataset used for training
contained influential distances calculated from the Kivx of E. coli DHFRs, shown as purple squares;
human DHFRs, shown as blue diamonds; and all other bacterial DHFRs, shown as triangles. The
distance between Asp54 and Thr185 in PfDHFR-TS X-ray structures in complex with methotrexate has
shown the power of the prediction of the model. The mouse DHFR, an orange diamond, is an outlier.

The inaccuracy comes from the heterogeneity of data from wet lab, the
flexibility of these molecules (both TOP and MTX) which affects the
superposition and hence the binning of the atomic environments. Also,
there is a difference in the conformation of MTX molecules in P/DHFR-
TS from other methotrexate complexes in the 13 input DHFR from various
species that were used to train the model. This MTX conformation (PDB:
7F3Y) is found in parasitic DHFR-TS structures, such as DHFR from C.
hominis and T. gondii DHFR (unpublished), except for Trypanosoma cruzi
DHFR. The trimethoprim molecule is known to adopt upward
conformation in eukaryotes and downward conformation in bacterial and

fungal DHFR (Matthews et al, 1985). This trimethoprim in P~-DHFR-TS
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adopted the downward conformation (PDB: 7F3Z) and shows acceptable
predictive power of influential distance equation (Figure 6). By increasing the
number of atoms of MTX and TOP along the core of the structure for
superposition, the models can be improved by using our web interface.
However, the obtained distances will be changed from the initial data set
which use heteroatoms by default because they are obtained from binning
another set of atoms used for superposition. The predictive models are
obtained from the set of superposed atoms that give more numbers of
conservation and results in one distance, and not necessary the ones with
the highest R? values. See X-ray data collection in Table 1 and the MTX

binding affinity calculation in Table 4, which results in Table 5 & Table 6 and

Figure 7

3. Protein-ligand interaction analysis

This function can be used to observe protein and chemical fragment
interaction. We found that the number and the type of atoms affect the
binding affinities, as well as distances, due to chemical interactions
requiring certain interacting atom types. The function calculates the
chemical binding of the fragments against all the proteins in the database,
where the user can observe a particular atomic interaction by clicking in
check boxes of atoms they want to observe. The trend of binding affinities
often depends on the number of hydrogen bonds or ionic interactions.
Sometimes more interactions are better due to favorable attraction, while
other times a smaller number of interactions is better due to the steric
interactions. If we know the trend of how many hydrogen bonds should be
made, certain hydrogen bonds can be added or removed to control the
binding affinities to a desirable positive or negative trend. The trend of
numbers of hydrogen bond and binding affinities were based on our

previous work on protein kinase interaction with methylamine moieties of
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staurosporine (Tanramluk et al., 2009) and was also confirmed by another
experimental group (Hirozane et al.), who studied 288 pan-kinases for

design of fluorescent probe (Hirozane ef al, 2019).

4. Active site boundary

This function is used for defining the active-site boundaries based on the
accumulation of ligand atoms as a voluminous structure inside the pocket.
The active site boundaries in ligand design used to be obtained from rolling
a sphere on the van der Waals surface of the protein active site, until the
development of more recent grid-volumetric based methods and others
(Ehrt et al, 2018). In this study, we used each of the ligand atoms as a probe
to detect the parts of the pocket that are accessible by foreign non-protein
atoms. The grid boxes are used for summing up ligand atoms in each
location by binning atoms; this will intensify the signal-to-noise ratio of
each atom type compared with the background. Cutoff numbers were
applied so that atoms that always stay in certain locations more often than
the cutoff value should show up at higher cutoff than the others (Figure 8,
Supplemental Video).

By this method, we may re-engineer the imaginary ligand inside the pocket
of the protein by observing various species of the main protease and
including those of the recent Coronavirus protease structures from the
Diamond Light Source website. Superposition of SARS-CoV-2 main
protease structures harbouring covalent, non-covalent, or other small
fragments (The Diamond Light Source, 2020) allows us to see the
summation of all the fragments dissected into various frequently occurring

atom locations.
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Figure 8. Main protease showing frequently occurring atoms in green, with size depending on the
frequency found (Supplemental Video). The map shows which atoms of the ligand, out of hundreds
of structures, retain their location more than other random ligand atoms, using the size of the spheres
to indicate frequency. In this way, drug researchers can infer which atoms of the drug to retain.

This information is available on the URL http://mprocovid.com, which is

an example of how we use the MANORAA system’s programmable URL

as a backend for identifying the most important atoms for drug design.

5. Empirical studies of influential distances equations

Similar methods to the previously mentioned Variation Parts were applied
to all the ligands with binding affinity values available with more than 3
structures in the PDB, with each set having default input as all heteroatoms
for superposition. Partial Least Squares methods were used to learn the
distances inside the pockets. All the most important distance descriptors
obtained were called influential distances. From 180 ligand-protein
structures with available binding affinity values, distances were drawn on

the structures with available URL for viewing the directions obtained from
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the equation on the 180 template PDB files in the last column (Table 9). This
algorithm can empirically relate the frequently occurring entities inside the
protein with the binding affinity, as shown by the mean R? equals to 0.908.
Noted that when structures in the data set are larger, the R? may be lower
because distances and K; are separately obtained by laboratories from
various settings around the world. We map these distances to find the
physical meaning and observe by eye-inspection. There is an observable
trend of the binding affinity data prediction based on these equations and
they can be estimated by using the logarithm of K or K4 and excluding all
the other types of activity such as ICsy (the half maximal inhibitory
concentration). In this way, although the values vary due to slight technical
differences, the binding affinities that have the same magnitude should be
located near one another in the trend line. We hypothesized that the inter-
atomic distance equation obtained can relate to physico-chemical
properties (K; or Kq). Many of these influential distances located parallel to
the plane of ligand’s aromatic rings. These data are available in tabulated
format with a graphical interface to allow visual observation by peers via

the URL provided in Table 9.

Conclusion

Although, the machine learning algorithm allows for general prediction,
there is a need to show why these descriptors are influential and offer ways
to be understood and interpreted using the web interface. The bottom line
is to have a platform that allows users to overcome the limit of synthesizing
knowledge from complex data in conventional publishing styles. This
platform offers a customized integration of the biomedical big data for drug
design and allows in-depth interpretation of the data. Although, some parts
of the database backend rely on CREDO v.2016 and may not be the service
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of propriety data from drug company. However, we allow uploading
structure, so all can use this platform through the programmable URL,
allowing agile queries via the data interface for multiple operating systems.
The machine learning service we provide allows for a custom-made
fragment superposition and Partial Least Squares regression analysis to
explain several protein-ligand complexes providing acceptable values with
our experimental confirmation from 3 separated scenarios. Such analyses
are now possible for sets of homologous structures in the PDB, as
demonstrated for DHFR and protein kinases. We envisioned that the
method can be improved so that we can understand how to design
multitargeting ligands by introducing preferable distances by adding
bioisosteric ligand atoms near the residue used to measure influential
distances to show contraction or expansion direction along the protein.
Furthermore, promiscuous atoms at each residue obtained from the
conservation location can be considered as requirements for binding and
hence are often present in off-target proteins. The future goal is to improve
the platforms that can be used for both inhibitor design and protein
engineering, and to bridge the gap between in-depth scientific calculations

and big data (Figure 1).

The in-depth analysis allows web-based analysis of X-ray structure in
multiple proteins, which include structural conservation, protein-ligand
interaction, and structural variation. By using our service, unusual side-
effects such as cardiac muscle contraction from schizophrenic drug,
trifluoperazine; and breast cancer tendency in estradiol hormone can be
discovered without waiting for the side-effects to occur in the large
population. The side effects can be discovered by linking through proteins
causing symptoms, biological pathways and their common baseline

expression in specific tissues using our service. Learning how a small
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molecule interacts with protein based on our influential distance equations
can open door for a breakthrough to next generation ligand design. By this

way, the system created can be of benefit to the drug design community.
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Appendix

Supplemental Video about the MANORAA project at Mahidol World (>500 views)
https://youtu.be/f9eeXNGJJFO
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