

# AI-driven Drug Design Platforms

Correspondence:

Asst.Prof. Dr.Duangrudee Tanramluk

Institute of Molecular Biosciences and

Integrative Computational Biosciences (ICBS) Center

This research project is supported by Mahidol University

# Table of Contents

| Table of Contents                                                                                  |
|----------------------------------------------------------------------------------------------------|
| Table of Figures                                                                                   |
| Table of Tables                                                                                    |
| Executive Summary4                                                                                 |
| Abstract                                                                                           |
| Introduction                                                                                       |
| Objectives                                                                                         |
| Methodology                                                                                        |
| 1. Overview of the web interface12                                                                 |
| 2. Development of structural conservation function13                                               |
| 3. Development of binding-distance correlation function14                                          |
| 4. Experimental validation via SaDHFR kinetic studies15                                            |
| 5. Structural validation of PfDHFR-TS and influential distances17                                  |
| 6. Kinetic Analysis for PfDHFR-TS23                                                                |
| 7. Favorable distance from binding affinity calculation of SaDHFR-TOP                              |
| 8. Empirical studies of influential distance equation26                                            |
| Results & Discussion                                                                               |
| 1. Conserved parts of protein-ligand complexes31                                                   |
| 2. Variation parts that related to binding affinity values                                         |
| 3. Protein-ligand interaction analysis38                                                           |
| 4. Active site boundary                                                                            |
| 5. Empirical studies of influential distances equations40                                          |
| Conclusion                                                                                         |
| References                                                                                         |
| Appendix                                                                                           |
| User Manual                                                                                        |
| • MANORAA functions and example of drug research done using our AI-driven Drug Discovery Platforms |
| User Statistics                                                                                    |

- Recommendation from Key Stake Holders (Big Pharma)
- Satisfaction Survey

# Table of Figures

| Figure 1. MANORAA drug-design server scheme7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2. Structural conservation represented as a gradient in color from yellow to green to blue to visualize the occurrence of conserved residues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure 3. Density display of the distinctive parts of conserved residues that frequently occur.<br>After normalization, they are used for creating the gradient-color pictures (left). All the distances<br>plotted between conserved atom pairs in the bin are then filtered and included in the protein-<br>ligand distance binding affinities correlation model (right)                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure 4. The orange bar is drawn between <i>Sa</i> DHFR's residues Leu5 and Ala7, which is the favorable expansion distance based on the coefficient of the independent variables in Equation 1 that results in a lower <i>K</i> <sub>i,TOP</sub> for <i>Sa</i> DHFR (prove in Table 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure 5. Bar graph representing $K_{i,TOP}$ of wild-type (WT) and mutant SaDHFR (L5V, L5M, A7S, A7G). The x-axis is the type of mutation and the y-axis is the $K_i$ value of trimethoprim ( $K_i$ , TOP). The data are presented as mean ± standard error of the mean ( $n = 3$ ). The L5V mutation suggested by (Equation 1) can improve the SaDHFR binding affinity to trimethoprim by 2-fold (Table 8).                                                                                                                                                                                                                                                                                                                                                                       |
| Figure 6. Predictive power of the influential distance equation for <i>Ki</i> , <sub>TOP</sub> in complex with K1 mutant of <i>Pf</i> DHFR-TS (red circle, Table 2 and Table 3)35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 7. Predictive power of the influential distance equation to calculate $K_{i,MTX}$ in TM4 <i>Pf</i> DHFR-<br>TS (red circle, Table 5 & Table 6). The x-axis is the experimental binding affinity value and the y-<br>axis is the predicted binding affinity value calculated by influential distances. The dataset used<br>for training contained influential distances calculated from the $K_{i,MTX}$ of <i>E. coli</i> DHFRs, shown as<br>purple squares; human DHFRs, shown as blue diamonds; and all other bacterial DHFRs, shown as<br>triangles. The distance between Asp54 and Thr185 in <i>Pf</i> DHFR-TS X-ray structures in complex with<br>methotrexate has shown the power of the prediction of the model. The mouse DHFR, an orange<br>diamond, is an outlier. |
| Figure 8. Main protease showing frequently occurring atoms in green, with size depending on the frequency found (Supplemental Video). The map shows which atoms of the ligand, out of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nundreds of structures, retain their location more than other random ligand atoms, using the size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# Table of Tables

| Table 1.Data collection and refinement statistics of the ternary complexes of PfDHFR-TS WT(TM4) and double mutant PfDHFR-TS (K1, C59R+S108N)                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2. Binding affinity calculation from influential distance of K1 PfDHFR-TS crystal structures incomplex with trimethoprim, Related to Figure 6 & Table 320                                                                                                                                  |
| Table 3. Experimental versus predicted binding affinity and influential distances from DHFRstructures with TOP to show predictive power, related to Figure 6 and Table 220                                                                                                                       |
| Table 4. Binding affinities calculation for MTX in complex with DHFRs from various species21                                                                                                                                                                                                     |
| Table 5. Binding affinity calculation from influential distance from TM4 <i>Pf</i> DHFR-TS crystalstructure in complex with methotrexate, Related to Figure 7, Table 6                                                                                                                           |
| Table 6. Log <sub>10</sub> <i>Ki</i> , MTX used for binding affinity calculation from influential distance in crystal structures of DHFR in complex with MTX, Related to Figure 7 and Table 5                                                                                                    |
| Table 7. Structural alignment and distance-binding affinity relationship for TOP-DHFR (Equation1) are obtained by using the pyrimidine-2,4-diamine ring and the linker's input atoms as the rigidfragment from trimethoprim and their PDB files (Table 8).25                                     |
| Table 8. Trimethoprim binding affinity calculation to prove that influential distance equation can be used for improving <i>Ki</i> , TOP in <i>Sa</i> DHFR, Related to Figure 4, Figure 5 & Table 7                                                                                              |
| Table 9. Empirical studies of influential distances obtained from superposition of heteroatoms of PDB ligands with visual inspection URLs and links to each data set, Related to Empirical studies of influential distance equation under quantification and statistical analysis of the methods |
| Table 10. Limitation of the method presented using Median of R <sup>2</sup> vs number of structures30                                                                                                                                                                                            |

For the future of biocomputing era, the machine learning platform for structure-based drug design is very crucial. The world is in urgent need to harvest big data for a better understanding of controlling molecular function. The ability to dissect drug binding affinity from protein structures can enable next generation molecular design. Our MANORAA server allows international collaboration for the advancement of scientific discovery related to healthcare and well-being.

MANORAA project is an augmented intelligent drug design platform. It has been built from partnership among various Mahidol University's departments in collaboration with the University of Cambridge, UK. The aim is to offer insights into information harvested from many biomolecular

web resources. By this digital transformation, we allow a better understanding of molecular basis from big picture and in-depth perspectives to accelerate laborious experiments with data science. We also support open science by depositing 180 ligand data sets to public repository.

MANORAA allows in-depth analysis of inter-residue distances in protein pockets. It merges the interface of physical, digital, and biological world through drug discovery research. Unlike most machine learning studies, we provided careful experimental prove of our findings that certain distances and hence their mutation can result in improved binding affinity. By measuring molecular distance and interaction at angstrom level, the users can decipher complex features of a target molecule by just a few mouse clicks. This server allows agile queries and hence it is built as a webserver accessible programmatically. Due to recent data privacy regulations, we are unable to collect user's information. However, we hope to allow user's login to allow for voluntary data submission and scientific networking.

This timely research has enabled pandemic preparedness. For instance, our MproCovid.com webserver powered by MANORAA is devoted to understanding the actives site of SARS-CoV-2 Main Proteases. The engine is available for analysis of structures for the whole Protein Data Bank. It may enable the advancement of precision medicine by paving the way for tailor-made molecular design. The proteins in the platform include of targets for infectious diseases, non-communicable diseases, and many more.

We have also aimed to train younger generations scientists to become high-skilled workforce by providing data foundation for bioscience research. During the last year, Manoraa was taught in Metaverse for the MBMG 601 (Current Topics in Molecular Biology) course and obtained full scores evaluation (5/5) for all categories. This centralized platform has opened door for online education, where learners' experiences integrate seamlessly into the digital world.

The MANORAA algorithms has been published in "Structure" and was ranked as "Most Read" at Cell Press website for the first 5 weeks. Our YouTube video, which introduces the MANORAA project, has gained the attention from world experts in the field of drug discovery (Linkedin). There are invitations for presentations from the great pioneers of structural bioinformatics & drug design (see Appendix), which affirmed that this server brings values to the molecular design community.

In conclusion, this multidisciplinary machine learning platform can guide molecular design technology and can strengthen human capabilities to understand complex biological world through our machine learning algorithms. If the backend databases grow larger, it can act as a biomolecular data hub. The biomolecular design process can be cheaper, faster, and more effective.



# Abstract

The MANORAA platform uses structure-based approaches to provide information on drug design, originally derived from mapping tens of thousands of amino acids on a grid. In-depth analyses of the pockets, frequently occurring atoms, influential distance, and active site boundaries, are used for the analysis of active sites. The algorithms derived provide model equations that can predict whether changes in distances, such as contraction or expansion, will result in improved binding affinity. The algorithm is confirmed using kinetic studies of DHFR, together with two DHFR-TS crystal structures. Empirical analyses of 881 crystal structures involving 180 ligands are used to interpret proteinligand binding affinities. MANORAA links to major biological databases for web-based analysis of drug design. The frequency of atoms inside the main protease structures, including those from SARS-CoV-2 shows how the rigid part of the ligand can be used as a probe for molecular design (http://manoraa.org).



Video Abstract at Mahidol World

## Introduction

Big data and machine learning offer exciting opportunities for drug discovery (Adeshina *et al*, 2020; D'Souza *et al*, 2020; Hochreiter *et al*, 2018). Machines are unlikely to replace human intelligence completely in the field of drug discovery, since much of the decision making in drug discovery will still rely on the intuition of the medicinal chemist. However, we can make the procedure more efficient by equipping the human brain with easy to use, fast and affordable tools to assist the drug design process. During this era of the pandemic, scientists are in urgent need of having a centralized and systematic platform to facilitate small molecule drug discovery. This type of drug is indispensable as it requires more feasible administration and logistics, compared to other more advanced biologics for therapeutic use.



Figure 1. MANORAA drug-design server scheme.

Nowadays, machines can devise routes for synthesizing almost any molecule. The challenge has now shifted towards deciding what molecule should be synthesized to optimize binding of inhibitor to target proteins. CRISPR-cas9 will allow us to generate any protein in a living cell, so that we may be able to adjust the binding affinity, so that it is under the control of an inhibitor. Chemical databases such as ChEMBL (Davies et al, 2015) and PubChem (Kim et al, 2018) can facilitate the gathering of ligand information. However, there is still no obvious way of interpreting information on drug-protein interactions to impact society in terms of providing new perspectives for the design of new medicines. With the amount of data available and recent advances in protein folding (Jumper et al, 2021; Tunyasuvunakool et al, 2021), scientists should be able to use machine learning, not only to design small molecule ligands, but also to determine what mutations should be made to improve the healthcare and biotechnology industries. However, there is no centralized system to facilitate the design of new ligand that can be shared among scientific community. Although, the new methods, such as Deep Learning, have been used in computer-aided drug design and discovery with excellent results (Nguyen et al, 2019), the drawback lies in the complexity of the calculation that makes analysis and interpretation of results very difficult (Ding & Zhang, 2021; Lavecchia, 2019). For the field of image recognition, understanding the parameters may not be as important as accuracy in prediction. However, for drug design, the analysis to determine which part of the molecule that makes the ligand bind to a protein tighter would greatly affect the next step of design. Machine learning attempts have been made for virtual screening by training models using decoys (Adeshina et al., 2020). However, we have chosen crystal structures as inputs for our study as we believe that the far more accurate atomic locations, obtained from electron density data, can give more meaningful physical interpretation.

Hence, we have devised universal methods to filter distances in the pocket that are statistically meaningful for binding from analysis of 180 ligandprotein data sets.

Our objective is to simplify the analysis of protein-ligand complexes to enable modification of their binding and hence their function. With more than 140,000 X-ray structures in the Protein Data Bank (PDB) (Velankar *et al*, 2016), we also constructed a pipeline to decipher the information from the PDB structural database, ChEMBL (Davies *et al.*, 2015), OpenTargets (Carvalho-Silva *et al*, 2019), KEGGs (Kanehisa & Goto, 2000), SAMUL (Gong *et al*, 2011) as mentioned in the previous release of MANORAA (<u>Mapping Analogous Nuclei onto Residue and Affinity</u>) (Tanramluk *et al*, 2016).

With this new release, MANORAA.org has become an augmented intelligent drug-design platform, by combining efforts from in-depth analysis and the big picture. By the big picture route, our server provides the information accumulated by the biological community, by tabulating and linking data from major biological databases. This can be used to harvest information for drug targets, since each ligand that can bind to the protein is likely to affect that target protein in general. Baseline expression of drug targets are shown in the form of either protein or RNA expression in various target organs via OpenTargets (Carvalho-Silva et al., 2019). The user can infer how tightly a drug binds to a protein from BindingMOAD (Benson et al, 2008), in order to analyze the molecular interactions between the same ligand in different protein structures, so as to gain insights into the most likely way to strengthen the binding affinity and avoid off-target interaction. Structure-based superposition using ligand atoms from rigid fragments provides information on conservation in the pocket, while the machine learning algorithm provides information on the variation in the pocket distances that affect the binding affinity. Thus, we can offer a robust analysis platform for protein-ligand interaction to help understand the selectivity required, not only in conventional structure-guided drug discovery, but also in multi-target drug design and molecular design of the probe (Frye, 2010; Workman & Collins, 2010).

In terms of drug design and probe-molecule design, our tool helps to devise the rules on which parts of the ligand should be altered and how more atoms may be designed to make the chemical compound bind more tightly to the target protein. For a more challenging aim, such as multi-target drug design, our approach can shed light on the interactions that govern trends in binding affinity for a defined set of inhibitors. These aims can be accomplished through our method if there is sufficient data available on protein-ligand complexes and the associated binding affinity. The cloud computing system provided enables machine learning in a centralized platform that offers reproducibility of structural analysis, while keeping the resulting hotspots of the small molecule structure secret by using programmable URL. It allows agile analysis by calculation of the influential distances on the fly, based on the customized set of atoms and PDB structures provided by users. It also allows visualization of the promiscuous parts that are crucial for ligand binding.

Our preliminary studies comprise superposition of tens of thousands of amino acid residues and collection of information on the nature and occupancy of the surrounding atoms on a grid (Tanramluk, 2005; Tanramluk *et al*, 2009). The results support our idea that by intensifying the signal to noise ratio in this manner, we can identify patterns of interacting atoms around amino acids side chains. Therefore, we analyze large numbers of crystal structures in complex with the same ligand, superposing these structures on rigid fragment of the bound ligand. This will allow dissection of the ensemble of protein atoms surrounding the ligand into those that show differences or similarities in the pocket. Then, we devise an algorithm to measure distances in all directions within the protein pocket and find the trends in the relationship between distances and binding affinities.

## **Objectives**

1. To develop a machine learning platform to guide protein and ligand design based on inter-residue distances

2. To prove the binding-distance correlation algorithms using X-ray crystal structures of *Plasmodial falciparum* DHFR-TS in complex with inhibitors

3. To prove the influence of the distance that relates to binding affinity via enzyme kinetics of *Staphylococcus aureus* DHFR

4. To provide a rough sketch of the shape of Main protease active site that may assist the design of SARS-CoV-2 main protease inhibitors

### Methods

#### 1. Overview of the web interface

The MANORAA platform is a starting point for gathering big data and can serve researchers in several fields, such as chemical biology, protein chemistry, biochemistry, molecular biology and computational biology (Figure 1). The user can begin with various information, such as knowledge of the chemical compounds or the protein, and use these to discover the mechanism of action and drug side effects in organs. The platform can provide users with various functions to perform an in-depth analysis at the levels of protein-ligand interaction and structural analysis. Functions include the retrieval of chemical fragments name and structural data, pathway discovery and target discovery, molecular interaction analysis, binding and distance correlation. Frequently occurring entities, such as atoms or residues that retain their position relative to inhibitor, can be viewed on the molecular visualizer via a unique URL, which is also programmable to allow repeating analyses from the same user or for sharing with colleagues. Searches using the common name of both evidenced based drugs and traditional medicine compounds are permitted by providing links to PDB 3-letter codes, which is the fastest way to obtain big picture panels of each small molecule. These functions help the user to start from the chemical fragment of interest and discover the target pathways, as well as prospective organ involved in disease progression and drug side effects. This is based on the assumption that the protein structure in complex with the ligand is a reliable source of information to indicate whether the ligands can bind to this target. Therefore, the website comprises all the information that links the relational databases on structure, based on unique identification numbers in various bioinformatics databases, such as ChEMBL (Davies et al., 2015), PDBe (Velankar et al.,

2016), OpenTargets (Carvalho-Silva et al., 2019), and KEGG (Kanehisa & Goto, 2000). Each protein structure associated with the ligand can be used to link to UniProt (The UniProt Consortium, 2020), which can provide the amino acid sequence for all these PDB structures, and hence be linked to protein expression levels and pathways. UniProt also linked out to Single Nucleotide Variant which shows their disease causing SNPs. Other useful information will include searching the ligand fragment that affect biological pathways (KEGG) in humans, the tissues and organs where associated proteins are highly expressed (OpenTarget's RNA/Protein baseline expression level). The UniProt allows linking to OpenTargets (Carvalho-Silva et al., 2019) which has Ensembl ID (Howe et al, 2021), so they can link the PDB of the protein structure to the normal protein and RNA expression levels in various tissues and organs, providing information on possible side-effects of drugs. This linking of big data from various databases decreases the amount of wet lab and animal testing required. Protein-ligand interactions function is described in the methods, results and discussion of our first MANORAA article (Tanramluk et al., 2016).

## 2. Development of structural conservation function

The structural conservation button sent information consists of ligand atoms and protein chains to invoke a Java module. The module was developed using the Java 1.6 and BioJava version 4.0, which can superpose the structure, binning the conserved atoms and colouring the conservation of atoms as colour gradient, before sending the data back to the structure visualization panel. Each PDB chains of all the structures was superposed onto the template based on the set of input atoms that the user picked. This method uses function SVDSuperimposer of BioJava to do atom superposition. It accepts input atoms to be used for superposition from the

users. The default values were all the heteroatoms, but a more specialized focus on rigid fragment atoms is recommended to improve the predictive power for flexible ligand. PDB with the lowest affinity value is used as the template for superposition. After all the structures were superposed based on the ligand atoms, all the amino acid atoms surrounding the ligand atoms are put into the bin according to its coordinate x, y, z, and atom types. The four-dimensional array was created with bin size equal to 1Å to collect all the atoms near the grid. All bins with >50% of structures that have atoms fall in were coloured. The numbers of atoms with highest frequencies to lowest frequencies were used to normalize the gradient colours from yellow to green to blue. The colours were generated by converting the numbers of atoms into percentages to input into the Temperature Factor column of the PDB file. The bin with the highest number of atoms will have a temperature factor equal to 100. All the other bins, which do not pass the 50% binning criteria, had their temperature factor set to zero. After the temperature factor columns were created, the information for all atoms were input as a new file, used to represent the conservation of atoms' panel with the JSmol visualization panel (JavaScript framework).

# 3. Development of binding-distance correlation function

All the user-selected PDB chain codes were used to superpose based on ligand's atom superposition using the function SVDSuperimposer of BioJava packages. All conserved atoms and center atoms of amino acid residues in the PDB chains are classified according to conserved atom types and residue types (Tanramluk *et al.*, 2009). A combined list of conserved atom and residue bins were pooled and the residues and atoms less populated than the cutoff were discarded. The conserved atom and residue bins which are 100% populated were collected. The bin of conserved entities was expanded 1 Å at a time to fill the equivalent residue

14

numbers of all selected structures. The algorithm scans for more bins with residues from every chain populated until reaching the maximum numbers of the bins, which is 10% of the average number of residues from all PDB chains. Center atoms from all the bins from each of the selected PDB files were used for distance calculations to populate the distance descriptors variable. The corresponding binding affinity values were used as observable parameters for Partial Least Squares regression (PLS). Variables were selected based on VIP (variable importance in the projection) values (Chong & Jun, 2005) in multistep filtering until the final set, and then the number of components giving lowest mean squared error (MSE) was chosen. These will then be used for PLS regression. Python 3.5.2, NumPy, Pandas and Python's Scikit-learn packages were used for computation in this step. Selected variables were presented with the influential distance in colours using NGL Viewer (Rose et al, 2018). If the coefficient is negative, the distance is shown in orange. If the coefficient is positive, the distance is shown in green. The orange bar means favorable in expansion for lower binding affinity ( $K_i$  or  $K_d$  values) and the green bar means favourable in contraction. The in vitro studies of Staphylococcus aureus DHFR in complex with trimethoprim were provided to predict the distances with improved binding affinities.

# 4. Experimental validation via SaDHFR kinetic studies

In order to construct a recombinant plasmid containing wide-type *Sa*DHFR, the *Sa*DHFR DNA fragment was PCR-amplified from genomic DNA of *S. aureus* subsp. aureus Rosenbach (ATCC) using specific primers and Phusion<sup>TM</sup> High–Fidelity DNA Polymerase (Thermo Scientific<sup>TM</sup>). The amplified product was analyzed on agarose gel electrophoresis and purified by using GenepHlow<sup>TM</sup> Gel/PCR Kit according the

manufacturer's protocol (Geneaid). The DNA fragment was cloned into the expression vector pET-17b (+) using the NdeI and EcoRI restriction sites to generate the recombinant plasmid. The recombinant plasmid was propagated in *Escherichia coli* DH5a and purified by High-Speed Plasmid Mini Kit (Geneaid). The mutant SaDHFRs were created by site-directed mutagenesis. Wild-type and mutant SaDHFRs were expressed in E. coli BL21(DE3). The cells were grown in Luria-Bertani medium supplemented with 100  $\mu$ g/ml ampicillin at 37 °C, 250 rpm until optical density at 600 nm reached  $\sim 0.8$ . The protein expression was induced using 0.5 mM isopropyl- $\beta$ -D thiogalacto-pyranoside (IPTG). The cells were incubated for 6 hours at 30°C after IPTG induction, and harvested by centrifugation (4°C, 20 min, 11,300xg). For protein purification, cell pellet was re-suspended in lysis buffer (50 mM sodium phosphate pH 8.0, 200 mM NaCl,10 mM imidazole), lysed by sonication, and centrifuged ( $4^{\circ}$ C, 20 min, 27,200xg). The clarified cell lysate was incubated with nickel-nitrilotriacetic acid (Ni-NTA) agarose beads (Qiagen) at  $4^{\circ}$ C for 45 minutes. After incubation, the mixture was transferred to a gravity column and washed with 50 mM sodium phosphate pH 8.0, 200 mM NaCl, 20 mM imidazole. SaDHFR proteins were eluted from Ni-NTA column using 50 mM sodium phosphate pH8.0, 200 mM NaCl, 250 mM imidazole. The enzyme was then exchanged into storage buffer (20 mM Tris-HCl pH 8.0, 20 % (v/v) glycerol, 0.1 mM EDTA, 2 mM  $\beta$ -mercaptoethanol, 50 mM NaCl) using dialysis. The enzyme was quantified by absorbance at 280 nm using molar extinction coefficient of 15,470 M<sup>-1</sup>cm<sup>-1</sup> as calculated by the ExPASy-ProtParam tool before flash freeze and storage at -80°C. DHFR activity was assayed by monitoring the rate of oxidization of NADPH at 340 nm, at 25°C for 3 minutes in 1 ml reaction. The concentrations of DHF and NADPH were determined using  $\varepsilon_{282} = 28,000 \text{ M}^{-1} \text{ cm}^{-1}$ , and  $\varepsilon_{340} = 6,220$ M<sup>-1</sup> cm<sup>-1</sup>, respectively (Penner & Frieden, 1987). For the determination of  $K_{\rm m}^{\rm DHF}$ , the concentration of NADPH was fixed at 100  $\mu M$  and the concentration of DHF was varied between 3.12-100 µM. For determination of  $K_{\rm m}^{\rm NADPH}$ , the reaction with 100 µM DHF was titrated with 3.12–100 µM of NADPH. The total enzyme concentration used in steadystate kinetic studies was 14 nM. The reaction was started by addition of DHF after a 1-minute preincubation. Enzyme inhibition assay was performed under the same steady state kinetics condition. The concentrations of trimethoprim inhibitor (dissolved in DMSO) were varied from 0–10 nM at different fixed concentrations of DHF. The reaction was started by DHF and TOP after a 1-minute preincubation. The Lineweaver-Burk plot of 1/V vs. 1/[DHF] at various TOP concentrations yielded a family of straight lines that share a common Y-intercept, which is characteristic of competitive inhibition. The inhibitory constant  $(K_i)$  was extracted by using secondary replot of the slope from the Lineweaver-Burk plot vs. the concentration of TOP, where the X-intercept indicates the  $(-K_i)$ value.

# 5. Structural validation of *Pf*DHFR-TS and influential distances

The *Plasmodium falciparum* DHFR-TS (*Pf*DHFR-TS) was expressed, purified and crystallized as described previously (Chitnumsub *et al*, 2004; Yuvaniyama *et al*, 2003). Briefly, the enzyme (15 mg mL<sup>-1</sup>) was cocrystallized with 2 mM each of NADPH, dUMP and either methotrexate (MTX) or trimethoprim (TOP) using a microbatch technique. Crystals grew in 0.1 M NaOAc, pH 5.0, 0.14 M LiCl<sub>2</sub>, 14% (w/v) PEG3350 (for TM4/MTX) and 0.08 M NaOAc, pH 4.6, 0.8 M NH<sub>4</sub>OAc and 28% (w/v) PEG4000 (for K1/TOP). A single crystal was harvested into a crystallizing solution containing 20% (v/v) glycerol as a cryoprotectant and flash-frozen in liquid nitrogen. For TM4/MTX, data were collected at beamline BL13B1 at NSRRC (Taiwan, ROC) and processed using HKL2000 (Otwinowski & Minor, 1997). For K1/TOP, data were collected on Rigaku/MSC RU-H3R rotating anode generator (50 kV, 100 mA) equipped with Osmic Confocal Maxflux multi-layer optics and an R-Axis IV<sup>++</sup> image plate area detector and processed with CrystalClear/d\*TREK (Pflugrath, 1999). MOLREP was used for molecular replacement (Vagin & Teplyakov, 2010) from the CCP4 suite (Winn *et al*, 2011). The wild-type TM4 (PDB ID: 3QGT) (Vanichtanankul *et al*, 2011) and K1 mutant (PDB ID: 1J3J) (Yuvaniyama *et al.*, 2003) of *Pf*DHFR-TS complex structures were used as the search models for TM4/MTX and K1/TOP data, respectively. Structures were refined using REFMAC (Murshudov *et al*, 2011) and built using Coot (Emsley *et al*, 2010). Final structures were validated using SFCHECK (Vaguine *et al*, 1999). Data collection and refinement statistics are shown in Table 1.

The details of binding affinity prediction from the *Pf*DHFR-TS influential distances obtained from trimethoprim are described in Table 2 & Table 3 and methotrexate complexes are described in Table 5 & Table 6.

|                                      | TM4/MTX/NDP/dUMP         | K1/TOP/NDP/dUMP          |
|--------------------------------------|--------------------------|--------------------------|
| Data collection                      |                          |                          |
| Wavelength (Å)                       | 1.5418                   | 1.5418                   |
| Space group                          | $P2_{1}2_{1}2_{1}$       | $P2_{1}2_{1}2_{1}$       |
| <b>Unit-Cell Parameters</b>          |                          |                          |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)   | 56.678, 154.403, 164.165 | 56.332, 153.739, 164.119 |
| α, β, γ (°)                          | 90, 90, 90               | 90, 90, 90               |
| Resolution <sup>a</sup> (Å)          | 50-2.25 (2.33-2.25)      | 39.75-2.6 (2.7-2.6)      |
| Total reflections                    | 442,998                  | 182,523                  |
| Unique reflections                   | 66,860                   | 43,724                   |
| Completeness (%)                     | 96.9 (92.9)              | 97.0 (79.5)              |
| $< I/\sigma(I) >$                    | 22.8 (3.3)               | 10.1 (2.4)               |
| $R_{\rm merge}$ (%) <sup>b</sup>     | 7.4 (48.8)               | 8.3 (31.4)               |
|                                      |                          |                          |
| Refinement                           |                          |                          |
| $R_{work}/R_{free}$ (%) <sup>c</sup> | 18.22 (23.29)            | 19.79 (25.31)            |
| No. of Atoms/Average B-              |                          |                          |
| factors (Å <sup>2</sup> ) molA, molB |                          |                          |
| Protein                              | 8936/41.4, 8922/49.4     | 8964/60.8, 8964/66.8     |
| Inhibitor                            | 53/31.8, 53/59 (in DHFR) | 39/48.3, 39/66.8         |
|                                      | 53/69.8 (in TS)          |                          |
| NDP                                  | 71/29.8, 71/66.1         | 71/69.1, 71/104.3        |
| dUMP                                 | 30/35.7, 30/54.4         | 30/81.6, 30/80           |
| Glycerol                             | 12/44.3, 12/42.9         | 12/52.9, 12/65.4         |
| Waters                               | 546/37.75                | 194/46.2                 |
| R.m.s. Deviations                    |                          |                          |
| Bond lengths (Å)                     | 0.0095                   | 0.0077                   |
| Bond angles (°)                      | 1.613                    | 1.602                    |
| Ramachadran Plot                     |                          |                          |
| favored regions (%)                  | 94.08                    | 93.73                    |
| allowed regions (%)                  | 4.53                     | 4.98                     |
| outliers (%)                         | 1.39                     | 1.29                     |

Table 1.Data collection and refinement statistics of the ternary complexes of *Pf*DHFR-TS WT (TM4) and double mutant *Pf*DHFR-TS (K1, C59R+S108N).

<sup>a</sup> Values in parentheses are for the highest-resolution shell.

<sup>b</sup> $R_{merge} = \sum_{hkl} \sum_i |I_i(hkl) - \langle I(hkl) \rangle| / \sum_{hkl} \sum_i I_i(hkl)$ , where  $I_i(hkl)$  is the intensity of an individual reflection and  $\langle I(hkl) \rangle$  is the mean intensity of symmetry-equivalent reflections.

 ${}^{c}R_{work} = \Sigma_{hkl}||F_{obs}| - |F_{calc}||/\Sigma_{hkl}|F_{obs}|$ , where  $F_{obs}$  and  $F_{calc}$  are the observed and calculated structure-factor amplitudes, respectively.  $R_{free}$  was calculated in the same manner as  $R_{work}$  but using only a 5% unrefined subset of the reflection data.

| Calcu                    | lation           |            | Graphical<br>illustration                     |                                                                                         |                                                                 |                                                                                           |          |
|--------------------------|------------------|------------|-----------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------|
|                          |                  |            |                                               | (pred)                                                                                  | 1                                                               | (exp)                                                                                     |          |
| Log <sub>10</sub> Ki     | i, TOP           | = :        | Log <sub>1</sub><br>= 31.<br>Dista<br>31.3940 | <sub>0</sub> <i>Ki</i> ,TOP<br>3940 - 4.2<br>nce(lle14<br>-(4.2142 x<br>= <b>-2.838</b> | (pred)<br>2142 x<br>:Ala16)<br>x 8.123048381)<br><mark>2</mark> | Log <sub>10</sub> <i>Ki</i> ,TOP(exp)<br>=Log <sub>10</sub> (0.00362)<br>= <b>-2.4413</b> | Figure 6 |
| Binding<br><i>(Ki</i> ,T | Affinity<br>OP)  | Кі,Т       | OP(pre<br>= 0.001                             | d) = 10′(-<br>4516 mic<br>1.4516 nl                                                     | 2.838150487)<br>romolar;<br>M                                   | Ki,TOP(exp) =3.62 nM;<br>or<br>0.00362 micromolar                                         | N/A      |
| *Remark: Resid           | ues for TOP's ir | nfluentia  | l distanc                                     | e measu                                                                                 | rement in <i>S aure</i>                                         | us DHER is in brackets                                                                    |          |
|                          |                  | internet/  |                                               | ~7)                                                                                     |                                                                 |                                                                                           |          |
| $LOg_{10}RI = 31.39$     | 40 - 4.2142 X D  | istance(   | Leus.Al                                       | a <i>r</i> )                                                                            |                                                                 |                                                                                           |          |
|                          | Equation 1       |            |                                               |                                                                                         |                                                                 |                                                                                           |          |
|                          |                  |            |                                               |                                                                                         |                                                                 |                                                                                           | 5        |
| From PTDHFR-             |                  | /stal stru | locures                                       | (PDB ID:                                                                                | 7F3Z), the x, y,z                                               | coordinates that are equ                                                                  | Ivalent  |
| S aureus                 |                  |            | Jaiculau                                      |                                                                                         |                                                                 |                                                                                           |          |
| DHFR                     | Solved 7F3Z      |            |                                               |                                                                                         |                                                                 |                                                                                           |          |
| 3FRE.pdb                 | PfDHFR-TOP       | Х          | У                                             | Z                                                                                       |                                                                 |                                                                                           |          |
| residues                 | residue          |            |                                               |                                                                                         |                                                                 |                                                                                           |          |
| LEU5                     | ILE14 (CB)       | -2.791     | -0.275                                        | -55.141                                                                                 |                                                                 |                                                                                           |          |
| ALA7                     | ALA16 (CB)       | -3.226     | 7.834                                         | -54.944                                                                                 |                                                                 |                                                                                           |          |
|                          | Distance         | 8          | 123048                                        | <u>381</u>                                                                              | Å                                                               |                                                                                           |          |

Table 2. Binding affinity calculation from influential distance of K1 *Pf*DHFR-TS crystal structures in complex with trimethoprim, Related to Figure 6 & Table 3

# Table 3. Experimental versus predicted binding affinity and influential distances from DHFR structures with TOP to show predictive power, related to Figure 6 and Table 2

| PDP             | Distance (B7 B4)   | Exp             | eriment                   | Predi                     | cted        |
|-----------------|--------------------|-----------------|---------------------------|---------------------------|-------------|
| PDB             | Distance (B7, B1)  | <i>Кі</i> , ТОР | Log <sub>10</sub> Ki, TOP | Log <sub>10</sub> Ki, TOP | Ki, TOP     |
| 3FRE            | 8.024023554        | 0.0006          | -3.22184875               | -2.420840063              | 0.003794547 |
| 2W9G            | 7.980840683        | 0.00097         | -3.013228266              | -2.238858804              | 0.00576954  |
| 3FRB            | 7.871374594        | 0.1724          | -0.763462739              | -1.777546814              | 0.016689879 |
| 4G8Z            | 7.366680528        | 0.227           | -0.643974143              | 0.349334919               | 2.235295374 |
| 2W9H            | 7.83215328         | 0.43            | -0.366531544              | -1.612260352              | 0.024419662 |
| 3S3V            | 7.420398237        | 0.593           | -0.226945307              | 0.122957748               | 1.327265325 |
| 3N0H            | 7.413157829        | 0.617           | -0.209714836              | 0.153470276               | 1.423869792 |
| 2W9S            | 7.501040195        | 0.73            | -0.13667714               | -0.216883588              | 0.606898986 |
| 4KM2            | 7.258988979        | 0.82            | -0.086186148              | 0.803168644               | 6.355776895 |
| 1DYR            | 7.290275578        | 20              | 1.301029996               | 0.67132066                | 4.69159657  |
| 1DG5            | 7.273849394        | 88              | 1.944482672               | 0.740543886               | 5.502295187 |
| 7F3Z            |                    |                 |                           |                           |             |
| K1 Pf-DHFR-TS & | <u>8.123048381</u> | 0.00362         | -2.441291429              | -2.838150487              | 0.001451609 |
| ТОР             |                    |                 |                           |                           |             |

Table 4. Binding affinities calculation for MTX in complex with DHFRs from various species

(Top) Input binding affinity data from MANORAA, retrieved from BindingMOAD. (Bottom) Structural alignment for MTX-DHFRs and the output equation (Equation 2) to predict the trend of binding affinity values from influential distances. The same method was applied for empirical studies of 180 ligand-protein complexes (Table 9) with mean  $R^2 = 0.908$ 

| Ligand Structure                                  |                              |                             | POB C          | hales   |                  |              |              |  |  |  |
|---------------------------------------------------|------------------------------|-----------------------------|----------------|---------|------------------|--------------|--------------|--|--|--|
|                                                   | MTX                          |                             |                |         |                  |              |              |  |  |  |
|                                                   | CSW                          | CSV                         |                |         |                  |              |              |  |  |  |
| (YY                                               | Cuiprot & SNPs               | Pathways II                 | Target Protein | PDB II. | Resolution(Å) Il | Chain II     | Affinity(µM) |  |  |  |
|                                                   | P00374                       | hsa:1719                    | DYR_HUMAN      | 1072    | 1.9              | ₩.           | 0.0000034    |  |  |  |
| J.                                                | POABQ4                       | edi/Y75_p0048<br>ecorb0048  | DYR_BCOLI      | 2DRC    | NaN              |              | 9.000L3      |  |  |  |
| -lyth                                             | POABQ4                       | ecji/Y75_p0048<br>ecoib0048 | DYR_BCOLI      | 1807    | 2.0              | 12L          | 0.0007       |  |  |  |
| J.                                                | POABQ4                       | ecj:975_p0048<br>eco:60048  | DYR_BCOLI      | JORC    | NaN              | N.C.         | 0.0007       |  |  |  |
|                                                   | P00381                       |                             | DYR_LACCA      | SOFR    | 1.7              | ₩.           | 0.003        |  |  |  |
|                                                   | Q54801                       | sph:SD_1571                 | DYR_STRPN      | 2139    | 2.0              |              | 0.0039       |  |  |  |
|                                                   | P00374                       | hsa:1719                    | DYR_HUMAN      | LOLS    | 1.1              | ⊠A           | 0.0109       |  |  |  |
| MTX<br>Select substructures                       | P9WNX3                       |                             | DYR_MYCTU      | 10F7    | 1.7              |              | 0.011        |  |  |  |
| Heteroatomi                                       | Q81822                       |                             | Q81R22_BACAN   | 2008    | 2.4              |              | 0.03         |  |  |  |
| En Zing Zing Zing Eing                            | P00374                       | hsa:1719                    | DYR_HUMAN      | 3616    | 1.7              |              | 0.021        |  |  |  |
| Ebs Ebes Ebes Elas                                | P14207                       | has:2350                    | FOLR2_HUMAN    | 41010   | 8.1              | EL.          | 0.04         |  |  |  |
| We Wes Wes Wes                                    | POABQ4                       | egi175_p0048<br>eco150048   | DYR_ECOL1      | 1041    | 1.9              |              | 0.015        |  |  |  |
| VC7 VC84 VC9 VC11 VC12<br>VC13 VC14 VC15 VC16 Cc4 | 076290                       |                             | 076290_TRY88   | 2C7V    | 2.2              | EkEs<br>EkEs | 0.152        |  |  |  |
| Eles Eleo Eles Rey Eler                           | P00375                       | mmu:13361                   | DYR_MOUSE      | 1070    | 1.5              |              | 6.33         |  |  |  |
| Eler.                                             | POABQ4                       | ecji/Y75_p0048<br>ecoib0048 | DYR_ECOLI      | 10+0    | 1.8              | MARK.        | 0.381        |  |  |  |
|                                                   | showing 1 to 42 of 42 entrie |                             |                |         |                  |              |              |  |  |  |

Structural Conservation Protein-Ligand Interaction Binding-Distance Correlation Drug Design

| POB   | : 1072 0 | hain: A  |         | PDE: 31 | (D Chain: | : A     | POB    | : 10HI 0 | Chain: A |        |          |         |       |         |          |         |
|-------|----------|----------|---------|---------|-----------|---------|--------|----------|----------|--------|----------|---------|-------|---------|----------|---------|
| PDB   | 20RC 0   | Chain: A |         | PD8: 10 | LS Chain: | : A     | PDB    | : 1078 0 | Chain: A |        |          |         |       |         |          |         |
| PDB   | 1807 0   | Chain: A |         | PD8: 10 | 7 Chain:  | t A     | PDB    | 1003 0   | Chain: A |        |          |         |       |         |          |         |
| POB   | 3080 0   | Shain: A |         | PD8: 2Q | CE Chain: | i A     |        |          |          |        |          |         |       |         |          |         |
| POB   | 30PR 0   | Chain: A |         | PD6: 38 | CO Chain: | : A     |        |          |          |        |          |         |       |         |          |         |
| 208   | 81       | 82       | 83      | 54      | 85        | 84      | 87     | 11       | 89       | 838    | 811      | 812     | 81.5  | 814     | 815      | 816     |
| 1077  | ALA-29   | ALA-7    | ARD-32  | A5P-27  | 018-28    | OLU-111 | HI5-50 | TLE-5    | ILE-04   | LEU-57 | PHE-51   | THE-115 | THP-6 | TVR-100 | VAL-115  | VAL-93  |
| 1083  | ALA-20   | ALA-7    | LY5-32  | 588-27  | LEU-28    | TVR-111 | TEP-30 | TLE-5    | ILE-94   | LEU-54 | PHE - 51 | THR-115 | ALA-6 | TVR-108 | TLE-115  | VAL-93  |
| 1083  | ALA-20   | ALA-7    | 1.95-32 | 528-27  | LEU-28    | TVR-111 | TEP-30 | TLE-5    | ILE-94   | LTU-54 | PHE - 51 | THE-111 | ALA-6 | TVR-100 | TLE-115  | W4L-95  |
| 101.5 | A00-32   | ALA-9    | 0LN-35  | CLU-30  | PHT-31    | PHE-114 | TVR-55 | TLE-7    | VAL-115  | LEU-07 | PHE - 54 | THE-135 | WAL-B | TVE-121 | TLE-138  | TLE-114 |
| 1857  | ALA-29   | ALA-7    | 175-32  | ASP-27  | LEU-28    | TYR-111 | TRP-38 | ILE-5    | TLE-04   | LEU-54 | PHE-31   | THR-115 | ALA-6 | TVR-100 | ILE-115  | VAL-93  |
| 1070  | LYS-32   | ALA-D    | 0LN-35  | GLU-50  | PHE-31    | PHE-134 | TVR-53 | TLE-7    | VAL-115  | LEU-67 | PHE - 34 | THR-136 | WAL-B | TVR-171 | ILE-158  | ILE-114 |
| *3072 | ARD-33   | ALA-D    | GLN-35  | CLU-50  | PHE-31    | PHE-134 | TV8-33 | ILE-7    | VAL-115  | LEU-GT | PHE-34   | THR-156 | VAL-B | TVR-121 | ILE-158  | ILE-114 |
| 2080  | ALA-29   | ALA-T    | 1.15-32 | A5P-27  | LEU-28    | TVR-111 | TRP-30 | 110-5    | TLE-94   | LEU-54 | PHE-51   | THE-115 | ALA-6 | TVR-100 | ILE-115  | VAL-93  |
| 2008  | GLN-30   | ALA-B    | 175-33  | CLU-28  | LEU-29    | TVR-113 | TVR-31 | PET-6    | PH2-96   | LEU-35 | VAL-32   | THR-115 | WAL-7 | TVR-102 | ILE-117  | ILE-95  |
| SDPR  | HI5-28   | ALA-6    | ARD-31  | ASP-26  | LEU-27    | LEU-114 | TY8-29 | LEU-4    | ALA-97   | LEU-54 | PHE - 30 | THR-116 | TRP-5 | PHE-105 | LEU-118  | ILE-90  |
| SDRC  | ALA-20   | ALA-7    | LY5-32  | A5P-27  | LEU-28    | TVR-111 | TEP-50 | ILE-5    | ILE-04   | LEU-54 | PHE-51   | THR-115 | ALA-6 | TVR-100 | ILE -115 | WAL-93  |
| 3210  | ARD-32   | ALA-0    | GLU-35  | CLU-30  | AR0-31    | PHE-154 | TVR-55 | ILE-7    | VAL-115  | Ltu-67 | PHE-54   | THR-155 | WAL-B | TVR-121 | ILE-158  | ILE-114 |
| SIMP  | QLN-32   | ALA-10   | LY5-35  | GLU-30  | LEU-31    | ILE-117 | HIS-33 | ILE-B    | VAL-100  | LEU-58 | 792-54   | THE-119 | TRP-9 | PHE-106 | 115-121  | ILE-99  |

10H3 1078 10HI 5010 2QK8 10F7 10L5 31X9 30FR 30RC 1807 20RC 1072

Table 5. Binding affinity calculation from influential distance from TM4 *Pf*DHFR-TS crystal structure in complex with methotrexate, Related to Figure 7, Table 6

|                                                       |                                                                                                                                         |                               | Data                                                                                                                                                                                                                                    |                                                                       |                                                                                     |                                                              |                                 | Graphical illustration |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------|------------------------|--|
| Input                                                 | Input proteins<br>Input ligand<br>Input atoms<br>Template structure<br>Input structures<br>PDB ID                                       | DHFR<br>N1,<br>C7<br>1U72     | <u>in comple</u><br>N3, N5, N8<br><u>7, C8A, C9</u><br>, 2DRC, 1<br>2QI                                                                                                                                                                 | x with met<br>3, N10, NA<br>, C11, C12<br>1L<br>RG7, 3DF<br><8, 3EIG, | hotrexate 1<br>MTX<br>2, NA4, C,<br>2, C13, C1<br>72.pdb<br>RC, 3DFR,<br>1DHI, 1U70 | from vario<br>C2, C4, 0<br>4, C15, C<br>3IX9, 1DI<br>0, 1DHJ | C4A, C6,<br>16, CM<br>LS, 1DF7, |                        |  |
| Output                                                | Use this URL<br>Influential distance<br>equation for MTX<br>Predicted<br>influential<br>distance equation<br>in human DHFR<br>numbering | Log <sub>10</sub> K           | Log <sub>10</sub> <i>Ki</i> , MTX = 8.2741 - 2.6172 x Distance(Glu30:Thr136)<br>Equation 2                                                                                                                                              |                                                                       |                                                                                     |                                                              |                                 |                        |  |
| Prediction<br>by<br>influential<br>distance<br>(pred) | Predicted<br>Binding Affinity in<br>PfDHFR-TS & MTX<br>(PDB:7F3Y)                                                                       | Log <sub>10</sub> Ki,N<br>Ki, | _og <sub>10</sub> <i>Ki</i> ,MTX(pred) =8.2741- 2.6172 x Distance(Asp54:Thr185)<br>= 8.2741- (2.6172 x 4.313702586)<br>Log <sub>10</sub> <i>Ki</i> ,MTX(pred) = -3.015722408<br><i>Ki</i> , MTX(pred) = 0.000964 micromolar; or 0.96 nM |                                                                       |                                                                                     |                                                              |                                 |                        |  |
| Proven<br>by kinetic<br>experiment<br>(exp)           | <i>Ki</i> , MTX in<br>TM4 <i>Pf</i> DHFR-TS                                                                                             | Ki,N                          | /TTX(exp) =<br>Lo                                                                                                                                                                                                                       | = 0.20 ± 0.<br>g <sub>10</sub> <i>Ki</i> ,MT>                         | 03 nM; or (<br>((exp) = <mark>-3</mark>                                             | ).0002 mi<br>.69897                                          | cromolar                        |                        |  |
| Remark:                                               |                                                                                                                                         |                               |                                                                                                                                                                                                                                         |                                                                       |                                                                                     |                                                              |                                 |                        |  |
| From PfDHFF                                           | R-TS with MTX crystal                                                                                                                   | structures                    | (PDB ID                                                                                                                                                                                                                                 | : 7F3Y), tł                                                           | ne x, y,z co                                                                        | ordinates                                                    | for distance of                 | calculation are        |  |
| Human DHFR                                            | Solved 7F3Y<br>PfDHFR-TS<br>residue                                                                                                     | Х                             | У                                                                                                                                                                                                                                       | Z                                                                     |                                                                                     |                                                              |                                 |                        |  |
| GLU30                                                 | ASP54 (CG)                                                                                                                              | -0.086                        | -7.749                                                                                                                                                                                                                                  | -53.035                                                               |                                                                                     |                                                              |                                 |                        |  |
| THR136                                                | THR185 (CB)                                                                                                                             | 3.731                         | -6.899                                                                                                                                                                                                                                  | -51.214                                                               |                                                                                     |                                                              |                                 |                        |  |
|                                                       | Distance<br>$\sqrt{((x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2)}$                                                                              | 4                             | .31370258                                                                                                                                                                                                                               | <u>36</u>                                                             | Â                                                                                   |                                                              |                                 |                        |  |

| Target Protein**          | PDB  | Binding Affinity<br>(micromolar) | <i>Ki</i> ,MTX<br>(nM) | Distance<br>(B4,B12) | Log <sub>10</sub> <i>Ki</i> ,MTX<br>(pred) | Log <sub>10</sub> <i>Ki</i> ,MTX<br>(exp)<br>micromolar |
|---------------------------|------|----------------------------------|------------------------|----------------------|--------------------------------------------|---------------------------------------------------------|
| DYR_HUMAN                 | 1U72 | 0.0000034                        | 0.0034                 | 4.164948739          | -2.62640384                                | -5.46852108                                             |
| DYR_ECOLI                 | 2DRC | 0.00013                          | 0.13                   | 4.1888052            | -2.688840968                               | -3.88605665                                             |
| DYR_ECOLI                 | 1RG7 | 0.0007                           | 0.7                    | 4.111393195          | -2.486238269                               | -3.15490196                                             |
| DYR_ECOLI                 | 3DRC | 0.0007                           | 0.7                    | 4.190847886          | -2.694187086                               | -3.15490196                                             |
| DYR_LACCA                 | 3DFR | 0.003                            | 3                      | 4.416147416          | -3.283841017                               | -2.52287875                                             |
| DYR_STRPN                 | 3IX9 | 0.0039                           | 3.9                    | 4.034426601          | -2.284801301                               | -2.40893539                                             |
| DYR_HUMAN                 | 1DLS | 0.0109                           | 10.9                   | 4.018967405          | -2.244341492                               | -1.9625735                                              |
| DYR_MYCTU                 | 1DF7 | 0.011                            | 11                     | 4.087547676          | -2.423829776                               | -1.95860731                                             |
| Q81R22_BACA               | 2QK8 | 0.02                             | 20                     | 4.15034095           | -2.588172334                               | -1.69897                                                |
| DYR_HUMAN                 | 3EIG | 0.021                            | 21                     | 4.101166785          | -2.45947371                                | -1.67778071                                             |
| DYR_ECOLI                 | 1DHI | 0.055                            | 55                     | 3.529805094          | -0.964105891                               | -1.25963731                                             |
| DYR_MOUSE                 | 1U70 | 0.23                             | 230                    | 4.169463994          | -2.638221166                               | -0.63827216                                             |
| DYR_ECOLI                 | 1DHJ | 0.281                            | 281                    | 3.527337381          | -0.957647394                               | -0.55129368                                             |
| TM4<br>PfDHFR-TS<br>& MTX | 7F3Y | 0.0002                           | 0.2                    | 4.313702586          | -3.015722408                               | -3.69897                                                |

Table 6. Log<sub>10</sub>*Ki*, MTX used for binding affinity calculation from influential distance in crystal structures of DHFR in complex with MTX, Related to Figure 7 and Table 5

\*\*Use the text colour on the first column as seen on Figure 7 plot.

## 6. Kinetic Analysis for PfDHFR-TS

DHFR activity was determined spectrophotometrically by measuring the rate of reduction of NADPH at 340 nm using  $\varepsilon_{340}$  of 12,300 M<sup>-1</sup>cm<sup>-1</sup> (Hillcoat et al, 1967). Briefly, steady-state kinetics studies were performed using 6–10 mU of purified enzyme in the standard reaction (1 mL) of 1×DHFR buffer (50 mM TES, pH 5.0, 75 mM 2-mercaptoethanol and 1 mg mL<sup>-1</sup> BSA) containing 100 µM each of DHF and NADPH. Michaelis-Menten constant  $(K_m)$  was determined by varying either DHF or NADPH. The  $K_{\rm m}$  value was calculated using non-linear regression with KaleidaGraph 3.51 (Synergy Software, Reading, PA, USA) by fitting data to the Michaelis-Menten equation. The inhibition constant  $(K_i)$  was performed in 200 μL reaction described previously as (Kamchonwongpaisan *et al*, 2020). The  $K_i$  value was calculated using nonlinear least square equation for competitive inhibitor using KaleidaGraph 3.51 and used in the form of  $Log_{10}K_i$  that was obtained experimentally.

# 7. Favorable distance from binding affinity calculation of *Sa*DHFR-TOP

We developed a model to predict a set of highly influential descriptors (inter-residue distances) of the inhibition constant  $(K_i)$  for trimethoprim (TOP) on dihydrofolate reductase (DHFR). The distance between Leucine-5 and Alanine-7 ( $D_{L5:A7}$ ) exhibits the most linear influence on  $Log_{10}K_{i,TOP}$ . We proceeded with a set of rounds, running Partial Least Squares regression (PLS) using the program XLSTAT to estimate the best-fitting model, with the most probable explanatory variables or descriptors. Variables with less importance were filtered-out and the remaining variables were subsequently passed on to the next round of running until yielding the minimal number of variables. The model's predictive quality is measured by the  $Q^2$  cumulative index ( $Q^2$ cum), which involves the crossvalidation and sum of squares of errors. In this study, we chose the crossvalidation method of Jackknife leave one out (Jackknife LOO) (95% confidence interval) to validate the regression, and assigned the sum of squares of errors to be the minimum measure of predicted residual error sum of squares (minimum PRESS). The standardized coefficients enable us to weigh the descriptors in model, with the mathematical sign of each item suggesting the direction of the represented distance. The final  $Q^2$  cum, given the yielded variables, is still greater than zero, which indicates that the final model is validated and independent from the training data. The mathematical sign of coefficients from the model suggests the distance  $D_{L5:A7}$  as a negatively influential distance to the  $Log_{10}K_{i,TOP}$ ; in other words, the longer the distance  $D_{L5:A7}$ , the lower the  $K_{i,TOP}$ . To generalize the result

from PLS to research, we observed the suggested distances from the structure (PDB: 2W9G) in the *Staphylococcus aureus* DHFR to depict and justify how the amino acid residues and their inter-residue distances affect the binding to trimethoprim. The observation of the active site suggests that the width between the amino acid residues Leucine-5 and Alanine-7 shows the most potential importance for trimethoprim (TOP) binding; consequently, this suggests further investigation at the Leucine-5 to Valine (Figure 5).

The detailed calculation for this analysis is shown in Table 8. Our algorithm further analyses the effects of various distance directions and identifies distances that are most often to be found proportional or inversely proportional to  $\text{Log}_{10}K_i$ . By understanding trends inside the pocket, we should be able to predict the direction and the desired distance to be expanded or contracted in order to decorate either the protein or the ligand to bind more tightly to one another.

Table 7. Structural alignment and distance-binding affinity relationship for TOP-DHFR (Equation 1) are obtained by using the pyrimidine-2,4-diamine ring and the linker's input atoms as the rigid fragment from trimethoprim and their PDB files (Table 8).

```
Ligand: TOP
Atom: N2, N4, N5, N7, C1, C3, C6, C8, C9, C10
Template: 3FRE
Structure:
     PDB: 3FRE Chain: X
                                 PDB: 3S3V Chain: A
                                                             PDB: 1DG5 Chain: A
     PDB: 2W9G Chain: A
                                 PDB: 3N0H Chain: A
     PDB: 3FRB Chain: X
                                 PDB: 2W9S Chain: A
     PDB: 4G8Z Chain: X
                                 PDB: 4KM2 Chain: A
     PDB: 2W9H Chain: A
                                 PDB: 1DYR Chain: A
  PDB
          B1
                  B2
                                  B4
                                                                                  B10
                                                                                          B11
                                                                                                  B12
                                                                                                                  B14
                                                                                                                          B15
                          B3
                                          B5
                                                                  B8
                                                                          B9
                                                                                                          B13
                                                                                                                                  B16
         ALA-7
                ASP-27 CYS-110 GLN-28 GLU-111 HIS-30 ILE-5
                                                                 ILE-94 LEU-4
                                                                                  PHE-31 SER-155 THR-113 TRP-6
                                                                                                                  TYR-100 TYR-154 VAL-112
  1DG5
  1DYR
          ALA-12 GLU-32 ILE-141 ILE-33 MET-142 TYR-35 ILE-10
                                                                 ILE-123 LEU-9
                                                                                  PHE-36
                                                                                         MET-201 THR-144 VAL-11
                                                                                                                  TYR-129 GLU-200 ALA-143
  2W9G
          ALA-7
                 ASP-27
                         MET-108 LEU-28 TYR-109 HIS-30 LEU-5
                                                                  PHE-92 ILE-4
                                                                                  VAL-31 HIS-153 THR-111 VAL-6
                                                                                                                  PHE-98 LEU-152 ILE-110
                 ASP-27
                         MET-108 LEU-28
                                          TYR-109 HIS-30
                                                                  PHE-92 ILE-4
                                                                                  VAL-31
                                                                                                                  PHE-98
  2W9H
          ALA-7
                                                          LEU-5
                                                                                         HIS-153 THR-111 VAL-6
                                                                                                                          LEU-152 ILE-110
  2W9S
          ALA-7
                 ASP-27 MET-108 LEU-28 TYR-109 HIS-30 ILE-5
                                                                  PHE-92 ILE-4
                                                                                  ILE-31 HIS-153 THR-111 VAL-6
                                                                                                                  TYR-98 LEU-152 ILE-110
                 ASP-27 MET-108 LEU-28
  3FRB
          ALA-7
                                          TYR-109 HIS-30 LEU-5
                                                                  PHE-92 ILE-4
                                                                                  VAL-31 HIS-153 THR-111 VAL-6
                                                                                                                  TYR-98 LEU-152 ILE-110
                 ASP-27 MET-108 LEU-28 TYR-109 HIS-30
GLU-30 LEU-133 PHE-31 PHE-134 TYR-33
  *3FRE
         ALA-7
                                                          LEU-5
                                                                  PHE-92 ILE-4
                                                                                  VAL-31 HIS-153 THR-111 VAL-6
                                                                                                                  PHE-98 LEU-152 ILE-110
                                                          ILE-7
                                                                                  PHE-34 VAL-181 THR-136 VAL-8
                                                                                                                  TYR-121 GLU-180 VAL-135
  3N0H
         ALA-9
                                                                  VAL-115 CYS-6
  3S3V
          ALA-9
                 GLU-30
                         LEU-133 PHE-31
                                         PHE-134 TYR-33
                                                          ILE-7
                                                                  VAL-115 CYS-6
                                                                                  PHE-34 VAL-181 THR-136 VAL-8
                                                                                                                  TYR-121 GLU-180 VAL-135
          ALA-12 GLU-32 ILE-141 ILE-33 MET-142 TYR-35 ILE-10
  4G8Z
                                                                 ILE-123 LEU-9
                                                                                  PHE-36
                                                                                         MET-201 THR-144 VAL-11
                                                                                                                  TYR-129 GLU-200 ALA-143
  4KM2
         ALA-7
                 ASP-27
                         CYS-110 GLN-28 GLU-111 HIS-30
                                                         ILE-5
                                                                  ILE-94 LEU-4
                                                                                  PHE-31 SER-155 THR-113 TRP-6
                                                                                                                  TYR-100 TYR-154 VAL-112
  Influential Distance:
  Log10Ki = 31.3940 -4.2142xD(B7,B1)
```

```
1DG5 1DYR 4KM2 2W9S 3N0H 3S3V 2W9H 4G8Z 3FRB 2W9G 3FRE
```

|        |                                                                      | Data                                                                                                                                                       | Graphical                            |  |
|--------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
|        | Input proteins                                                       | DHER in complex with trimethonrim from various species                                                                                                     | lilustration                         |  |
|        | Input ligand                                                         |                                                                                                                                                            |                                      |  |
|        | Input atoms                                                          | N2, N4, N5, N7, C1, C3, C6, C8, C9, C10                                                                                                                    |                                      |  |
| Input  | Template structure                                                   | 3FRE.pdb                                                                                                                                                   | -                                    |  |
|        | Input structures<br>PDB ID(chain)                                    | 1DG5(A), 1DYR(A), 2W9G(A), 2W9H(A), 2W9S(A),<br>3FRB(X), 3FRE(X), 3N0H(A), 3S3V(A), 4G8Z(X), 4KM2(A)                                                       |                                      |  |
| Output | Use this URL                                                         |                                                                                                                                                            | Table 7                              |  |
|        | Influential distance<br>equation for TOP                             | Log <sub>10</sub> <i>Ki</i> = 31.3940 - (4.2142 x Distance(B7,B1))                                                                                         |                                      |  |
|        | Predicted binding<br>affinity in<br><i>S.aureus</i> DHFR<br>sequence | $Log_{10}Ki = 31.3940 - 4.2142 \times Distance(Leu5:Ala7)$<br>This coefficient is negative, the longer the distance L5:A7,<br>the lower $Log_{10}Ki$ ,TOP. |                                      |  |
| Exp    | perimental prove                                                     | Site-directed mutagenesis at L5V can improve <i>Ki</i> ,TOP in <i>S.aureus</i> DHFR from 6.2 ± 0.62 nM to 3.5 ± 0.92 nM.                                   | Figure 5                             |  |
|        | Implication                                                          | Valine is shorter than Leucine, hence the pocket can be expanded to get longer distance in the pocket for better <i>Ki</i> .                               | Distance<br>direction<br>in Figure 4 |  |

Table 8. Trimethoprim binding affinity calculation to prove that influential distance equation can be used for improving *Ki*,TOP in *Sa*DHFR, Related to Figure 4, Figure 5 & Table 7.

## 8. Empirical studies of influential distance equation

A machine learning algorithm is used to generate a prediction model with a significant number of binding data ( $K_i$  or  $K_d$ ) available as PDB data on the latest CREDO database 2016 (Schreyer & Blundell, 2013). The rationale was to use the inter-residue distances harvested from frequently occurring atoms and residues for constructing the equations that can predict the majority of  $K_i$  or  $K_d$  data via distances alone. The protocols for generating the models are the same for all families of PDB chains included. The primary goal was to find general solutions where distance is most influential to the binding affinity values. Similar methods to variation parts previously mentioned were applied to all ligands with associated  $K_i$  or  $K_d$ less than 70,000 µM and having more than 3 structures in the PDB. From 22,506 PDB ligands, 22,252 ligands do not pass the criteria of more than 3 structures with  $K_i$  or  $K_d$ . PLS cannot process 74 ligands for the following reasons e.g., no heteroatom for selection, atom sets of ligands differ and cannot be superposed, no conserved atom and residue bins, and  $K_i$  or  $K_d$ having same value for all structures. The Partial Least Squares (PLS) method was applied to give a model equation from the distances inside the pockets. For each of the 180 data sets obtained, all of the heteroatoms of their ligand were selected for superposition to obtain frequently occurring neighboring entities for distance measurements. All the frequently occurring atoms and residues in the bin were used to refer to distinctive part of the residues to generate the distance table. The obtained interresidue distances as independent variable with binding affinity values  $(Log_{10}K)$  as dependent variables were subjected to the PLS regression as described in the binding-distance correlation function section. Multistep VIP (variable importance in the projection) values were filtered to choose the distances that are the determinants of binding affinity. The maximum number of output distance variables used for constructing the PLS models is limited to three parameters or less to minimize the equation's complexity, overfitting, and probability of matching by chance. The crossvalidation method was applied and all the most important distance descriptors obtained were called influential distances. The same techniques were applied to ligand-protein structures with binding affinity values, and the distances were drawn on the structures, with a button available for viewing these distances and their directions, obtained from the equation on the template PDB file in the last column of Table 9. The obtained  $R^2$  values were used to estimate the agreement between the experimental and

predicted binding affinity according to their PDB's 3-letter codes. The final results comprise 180 sets of ligands (n=180) with predictive power, i.e. mean  $R^2$  of 0.908, median  $R^2$  0.996 and standard deviation (SD) 0.182.

 Table 9. Empirical studies of influential distances obtained from superposition of heteroatoms of

 PDB ligands with visual inspection URLs and links to each data set, Related to Empirical studies of

 influential distance equation under quantification and statistical analysis of the methods.

| Ligand     | R       | Structures | Log.,Ki | Intercept | Coefficient1 | Coefficient2 | Coefficient3 | Distance1 | Distance2          | Distance3 | Equation                                                           | View          |
|------------|---------|------------|---------|-----------|--------------|--------------|--------------|-----------|--------------------|-----------|--------------------------------------------------------------------|---------------|
| GIM        | 1       | 3          | -1.2757 | -12.2495  | 0.788        | 0.157        |              | 11.3088   | 13.1412            |           | Log10Ki = -12.2495 +0.7880xDB19B49 +0.1570xDB29B59                 | 2CEQ          |
| 017        | 0.3416  | 22         | -4.9626 | 23.0326   | -2.4661      | -0.4572      | -0.2678      | 6.2217    | 15.8295            | 19.0074   | Log10KI = 23.0326 -2.4661xDB2B9 -0.4572xDB3B7 -0.2678xDB5B3        | 3LZS          |
| UDP        | 0.9377  | 6          | 1.5051  | 36.431    | -0.6836      | -0.5617      | -0.451       | 17.6406   | 27.598             | 16.1658   | Log10Ki = 36.4310 -0.6836xDB3B2 -0.5617xDB2B7 -0.4510xDB2B9        | 1070          |
| ADN        | 0.9985  | 5          | -2.6383 | 9.6391    | -0.2983      | -0.2922      | -0.1961      | 15.391    | 11.2393            | 22.0988   | Log10KI = 9.6391 -0.2983xDB6B13 -0.2922xDB2B9 -0.1961xDB3B12       | 1FMO          |
| PYR<br>4CO | 0.4834  | 6          | -0.5686 | -10.1722  | 0.48         | 0.0000       | 0.0048       | 21.6618   | 20.4069            | 17 0666   | Log10Ki = -10.1722 +0.4800xDB5B1                                   | 2HZL          |
| 400        | 0.7535  | 10         | -2.0070 | -2.1099   | -0.1401      | -0.2369      | 0.2046       | 21 6725   | 22.1900<br>14.6550 | 17.2000   | Log10KI = -2.1099 +0.2070XDB3B13 -0.2309XDB11B12 +0.2040XDB6B13    | 4476          |
| CP6        | 0.928   | 6          | -3.7959 | -14.5325  | -2.4806      | 1.6266       | 1.5625       | 13.3836   | 13.9692            | 13,7507   | Log10Ki = -14.5325 -2.4806xDB22B3 +1.6266xDB25B24 +1.5625xDB25B6   | 2BL9          |
| PBD        | 1       | 3          | -1.0223 | 110.8328  | -5.3398      | 1.2413       |              | 22.3226   | 5.9146             |           | Log10Ki = 110.8328 -5.3398xDB19B17 +1.2413xDB26B8                  | 3PBB          |
| QUS        | 0.9337  | 6          | -1.3768 | 71.2066   | -1.4741      | -0.721       | -0.5956      | 26.7435   | 28.4526            | 20.8345   | Log10Ki = 71.2066 -1.4741xDB4B3 -0.7210xDB11B32 -0.5956xDB27B26    | 4F2O          |
| BES        | 1       | 3          | -1.7447 | -16.364   | 0.6714       | 0.0754       |              | 20.0018   | 15.8133            |           | Log10KI = -16.3640 +0.6714xDB15B46 +0.0754xDB46B38                 | <u>1TXR</u>   |
| DCM        | 1       | 3          | -0.3098 | -71.2161  | 3.9516       | 2.4909       | -1.67        | 12.7953   | 18.316             | 16.1377   | Log10KI = -71.2161 +3.9516xDB10B26 +2.4909xDB21B24 -1.6700xDB19B20 | INJA          |
|            | 0.6922  | 3          | -4.01/7 | -8.0340   | 3.3002       | -2.7099      |              | 13,0000   | 15.1612            |           | Log10KI = -8.0340 +3.3002XDB11B22 -2.7099XDB24B0                   | 11/20         |
| 004        | 0.9907  | 3          | -1.8539 | 3.3933    | -0.6115      | -0.135       |              | 5.1894    | 15.387             |           | Log10KI = 3.3933 -0.6115xDB2B8-0.1350xDB2B10                       | 1494          |
| PHB        | 0.7101  | 8          | -0.1549 | -6.0735   | 0.2539       | 0.0903       | 0.089        | 20.4319   | 12.8918            | 8.8272    | Log10Ki = -6.0735 +0.2539xDB3B6 +0.0903xDB3B1 +0.0890xDB7B1        | 1YKJ          |
| 149        | 0.9876  | 5          | 1.0792  | -551.6492 | 14.4802      | 9.9337       |              | 21.5191   | 24.2784            |           | Log10KI = -551.6492 +14.4802xDB100B99 +9.9337xDB58B89              | 3VDB          |
| TPV        | 0.9762  | 5          | -5.0969 | 10.4262   | -2.2613      | 2.1938       | -1.897       | 8.2897    | 10.0385            | 10.0474   | Log10Ki = 10.4262 -2.2613xDB4B2 +2.1938xDB9B6 -1.8970xDB3B6        | <u>1D4Y</u>   |
| S2C        | 0.9982  | 4          | -0.5686 | -26.2312  | 2.2085       | -0.8986      | 0.3482       | 13.2979   | 7.9934             | 9.9441    | Log10KI = -26.2312 +2.2085xDB14B25 -0.8986xDB25B5 +0.3482xDB13B25  | 1WVA          |
| MOT        | 0.065   | 3          | -1      | 18.446    | -0.9233      | 0.3809       |              | 32.3141   | 12 0207            |           | Log10Ki = 18.4460 -0.9233xDB27B35 +0.3809xDB20B36                  | 2WZG          |
| G39        | 0.963   | 4          | -2.0000 | -1.3054   | -13.6278     | 2 3117       |              | 14 5951   | 14 6417            |           | Log10KI = -13054 -2 4426xDB26B4 +2 3117xDB18B12                    | 4B7R          |
| 9PL        | 1       | 3          | 1.6902  | -4.9297   | 0.1516       | 0.1431       |              | 26.2765   | 18.4286            |           | Log10Ki = -4.9297 +0.1516xDB22B26 +0.1431xDB4B39                   | 3T3Q          |
| STU        | 0.9975  | 4          | -3.4815 | 0.9509    | 0.7611       | -0.6108      |              | 4.4882    | 12.8408            |           | Log10KI = 0.9509 +0.7611xDB22B26 -0.6108xDB23B27                   | 1XJD          |
| G3G        | 0.9814  | 3          | -0.8928 | 9.7756    | -0.3754      | -0.1507      | 0.0693       | 20.0506   | 27.7496            | 15.7684   | Log10Ki = 9.7756 -0.3754xDB3B7 -0.1507xDB3B9 +0.0693xDB4B7         | 2R3W          |
| PGH        | 0.5227  | 8          | -1.6757 | -1.448    | 0.3366       | -0.2054      |              | 7.3477    | 13.0281            |           | Log10KI = -1.4480 +0.3366xDB3B2 -0.2054xDB4B3                      | 4DEL          |
| PRZ        | 0.9943  | 5          | -0.5229 | -1.3848   | 0.1588       | 0.0744       | -0.0384      | 4.7689    | 11.5249            | 18.9827   | Log10Ki = -1.3848 +0.1588xDB9B13 +0.0744xDB5B1 -0.0384xDB7B11      | 1QY1          |
| JE2        | 0 0006  | 3          | -2.0458 | -31 0921  | -41.2134     | -5.794       | -3.6341      | 16.4614   | 6.7594             | 16.0774   | Log10KI = 856.3995 -41.2134XDB49B45 -5.7940XDB27B31 -3.6341XDB5B47 | 1MSM          |
| FCB        | 0.9994  | 4          | -0.4559 | 52 2491   | -1.2932      | -0.8138      |              | 24 8133   | 25 2771            |           | Log10Ki = 52 2491 -1 2932xDB12B14 -0 8138xDB17B1                   | 7ABP          |
| PEP        | 0.9804  | 4          | -1.3979 | 0.8773    | -0.6407      | 0.1546       |              | 6,9981    | 13.7546            |           | Log10Ki = 0.8773 -0.6407xDB23B6 +0.1546xDB15B9                     | 1ZHA          |
| EZL        | 1       | 3          | -3      | 52.3146   | -2.7349      | -2.2554      |              | 9.8921    | 12.5301            |           | Log10KI = 52.3146 -2.7349xDB11B2 -2.2554xDB16B2                    | 3DD0          |
| 065        | 0.8468  | 5          | -3.5686 | 57.8288   | -3.0164      | -2.8882      |              | 10.2822   | 10.4509            |           | Log10Ki = 57.8288 -3.0164xDB5B2 -2.8882xDB3B2                      | <u>2Z4O</u>   |
| GBN        | 1       | 3          | 3.1139  | 16.8961   | -0.5273      |              |              | 26.1443   |                    |           | Log10KI = 16.8961 -0.5273xDB18B3                                   | <u>2COJ</u>   |
| CHI        | 0.9992  | 4          | 0.4314  | -4.7681   | 0.3197       | -0.1952      | 0.1404       | 23.894    | 21.0699            | 11.8386   | Log10KI = -4.7681 +0.3197xDB18B25 -0.1952xDB17B4 +0.1404xDB19B8    | 2REG          |
| 13P        | 0.9694  | 5          | -4.0458 | -0.7631   | 0.1476       | 0.1362       | 0.1232       | 4.4009    | 13,8642            | 4.3031    | Log10Ki = -0.7631 +0.1470xDB3B16 +0.1302xDB16B12 +0.1232xDB3B12    | 1N4K          |
| ACO        | 0.9456  | 4          | 0.3802  | 3.5524    | 0.467        | -0.3645      |              | 12.2819   | 24.482             |           | Log10Ki = 3.5524 +0.4670xDB8B16 -0.3645xDB6B1                      | 2WDC          |
| E1F        | 1       | 3          | -1.9547 | -12.5025  | 0.9295       | -0.4172      |              | 15.1628   | 8.4835             |           | Log10Ki = -12.5025 +0.9295xDB4B2 -0.4172xDB13B4                    | 4KNJ          |
| OXL        | 0.9794  | 5          | 0.6021  | 7.9928    | -0.2548      | -0.2329      | 0.2093       | 22.106    | 27.6979            | 23.3017   | Log10Ki = 7.9928 -0.2548xDB23B44 -0.2329xDB19B17 +0.2093xDB33B39   | 3 <u>B8I</u>  |
| NBB        | 0.9994  | 3          | -1.6383 | -3.6227   | 0.0676       | 0.0291       |              | 22.5633   | 15.6621            |           | Log10KI = -3.6227 +0.0676xDB3B2 +0.0291xDB4B11                     | <u>3D78</u>   |
|            | 0.8635  | 5          | -1.5686 | -6.4493   | 0.2911       | 0.255        |              | 5.2927    | 13.014             |           | Log10KI = -6.4493 +0.2911xDB7B1 +0.2550xDB7B13                     | 1FHX          |
| ZST        | 0.8136  | 10         | -4.4009 | -139 2216 | 10.6612      | 4 9369       |              | 5 0391    | 16.9866            |           | Log10KI = -139 2216 +10 6612vD827B31 +4 9369vD823B28               | 1ERB          |
| GDP        | 0.06    | 24         | -5.0269 | -0.3838   | 0.1545       | -0.0894      | -0.0334      | 10.5836   | 9.3784             | 8.4318    | Log10Ki = -0.3838 +0.1545xDB3B2 -0.0894xDB2B1 -0.0334xDB3B1        | 1A4R          |
| IMP        | 0.9976  | 4          | 1.6532  | 12.958    | -0.2307      | -0.2104      |              | 30.0188   | 21.0984            |           | Log10KI = 12.9580 -0.2307xDB9B11 -0.2104xDB11B14                   | 1YFZ          |
| KAI        | 0.9534  | 7          | -1.1898 | -58.6725  | 2.6756       | 2.3972       | 0.7688       | 4.0936    | 14.1519            | 16.1663   | Log10Ki = -58.6725 +2.6756xDB24B5 +2.3972xDB10B20 +0.7688xDB12B4   | <u>1TT1</u>   |
| MCF        | 1       | 3          | -5.3188 | -35.6836  | 1.0681       | 1.0127       | 0.0070       | 8.407     | 21.1144            | 10 3003   | Log10Ki = -35.6836 +1.0681xDB14B37 +1.0127xDB38B37                 | 4GBD          |
| 10P        | 0.6358  | 9          | -3.2218 | -20.5887  | 0.4645       | 0.3981       | 0.2272       | 13.0219   | 22.1459            | 10.7067   | Log10KI = -20.5887 +0.4645XDB9B6 +0.3981XDB6B10 +0.2272XDB2B6      | 3FRE<br>1 121 |
| 478        | 0.5397  | 13         | -3.8239 | 11 9467   | -2 7581      | -0.0073      | -0.4750      | 6 331     | 11 4037            | 10.7455   | Log10KI = 11.9467 -2.7581vD8289 +0.1890vD8886                      | 3NI 13        |
| CIT        | 1       | 3          | 3.0792  | 14.4046   | -0.3063      | -0.1514      | -0.116       | 16.8672   | 20.9875            | 25.7437   | Log10Ki = 14.4046 -0.3063xDB15B14 -0.1514xDB3B14 -0.1160xDB7B12    | 2FW6          |
| ADE        | 0.8834  | 7          | -3      | -15.4813  | 1.1254       | 0.5291       |              | 5.9388    | 12.8563            |           | Log10KI = -15.4813 +1.1254xDB4B7 +0.5291xDB3B6                     | 1WEI          |
| MTX        | 0.311   | 13         | -5.4685 | 17.2967   | -0.8423      |              |              | 24.2016   |                    |           | Log10KI = 17.2967 -0.8423xDB10B16                                  | <u>1U72</u>   |
| DYH        | 1       | 3          | -3.301  | 14.4043   | -3.4957      | 0.3177       |              | 6.5957    | 16.8469            |           | Log10KI = 14.4043 -3.4957xDB14B20 +0.3177xDB12B7                   | 3FV1          |
| GRO        | 1       | 3          | 2.0934  | -0.6269   | 0.0912       | 0.0278       | 0.0227       | 14.51     | 33.1588            | 20.9182   | Log10KI = -0.6269 +0.0912XDB39B1 +0.0278XDB32B13 +0.0227XDB22B47   | 1K5S          |
| TFB        | 1       | 3          | 2 301   | -108 293  | -0.4588      | -0.4527      | 1 1264       | 18 4559   | 10,9197            | 22 1066   | Log10KI = -0.7050 +0.4500XD04D0 +0.4527XD04D7 +0.2195XD09D0        | 1TIW          |
| BB2        | 0.8217  | 5          | -3.5528 | -82.1886  | 4.199        | 2.0314       |              | 13.2421   | 11.337             |           | Log10Ki = -82.1886 +4.1990xDB13B1 +2.0314xDB3B1                    | 1WS1          |
| 393        | 0.8734  | 7          | -1.3979 | -50.8234  | 2.5629       | 1.8538       | 1.8223       | 6.6098    | 11.0197            | 6.7845    | Log10Ki = -50.8234 +2.5629xDB18B23 +1.8538xDB22B4 +1.8223xDB30B24  | 2IKJ          |
| GTX        | 0.9934  | 4          | 0.1139  | -19.2788  | 0.8234       | 0.6593       |              | 14.6266   | 11.2973            |           | Log10Ki = -19.2788 +0.8234xDB4B20 +0.6593xDB18B20                  | 1YDK          |
| COU        | 0.973   | 5          | -0.5686 | 0.1736    | -0.2866      | 0.2608       |              | 22.8376   | 22.2219            |           | Log10Ki = 0.1736 -0.2866xDB3B32 +0.2608xDB14B4                     | <u>1Z10</u>   |
| BMP        | 0.000   | 3          | -5.0555 | -4.9214   | -0.0093      | 0.0028       | -0.0016      | 15.2476   | 9.4677             | 11.4884   | Log10KI = -4.9214 -0.0093xDB9B15 +0.0028xDB5B13 -0.0016xDB17B20    | 1X1Z          |
| AB1        | 0.999   | 4          | -0.5229 | 4.1942    | 4 3696       | -0.3064      |              | 19 7476   | 20.0042            |           | Log10KI = 4.1942 +0.4946XDB10B21 -0.3064XDB12B2                    | 205K          |
| SUE        | 0.9378  | 4          | -3.8539 | 26.0452   | -4.6095      | 1.3686       |              | 9.9082    | 11.5788            |           | Log10Ki = 26.0452 -4.6095xDB18B14 +1.3686xDB12B13                  | 3SUD          |
| G4G        | 0.9994  | 3          | -1.4437 | -17.3219  | 3.6683       | -0.7936      |              | 7.1332    | 12.9775            |           | Log10Ki = -17.3219 +3.6683xDB9B1 -0.7936xDB8B1                     | 2R38          |
| APR        | 0.9519  | 5          | 0.699   | -6.77     | 0.3613       |              |              | 20.614    |                    |           | Log10Ki = -6.7700 +0.3613xDB14B23                                  | 3GPO          |
| 120        | 0.9999  | 3          | 1.2041  | 0.9243    | 0.2223       | -0.0764      |              | 7.2969    | 17.5828            |           | Log10Ki = 0.9243 +0.2223xDB8B16 -0.0764xDB10B15                    | <u>1GHZ</u>   |
| 2NC        | 0.1702  | 14         | -1      | 33.3404   | -3.7109      | -2.358       | -0.1851      | 4.6806    | 6.1113             | 7.3038    | Log10Ki = 33.3404 -3.7109xDB5B2 -2.3580xDB5B1 -0.1851xDB4B3        | 3FSM          |
| DUP        | 0.9999  | 4          | -0.1612 | 2.613     | -0.0691      | -0.0621      | 0.0366       | 24.755    | 17.0731            | 23 2040   | Log10Ki = -2.8538 ±0.1493vDB4B6 ±0.0947vDB6B1                      | <u>31/189</u> |
| LDP        | 0.0974  | 5          | 0.1139  | -2.0038   | 0.1493       | -0.284       | 0.0306       | 17.0074   | 31.6634            | 20.2042   | Log10Ki = -0.5883 +0.5701xD843829 -0.2840xD8282826                 |               |
| EQU        | 0.9985  | 3          | -0.0915 | 0.2363    | -0.0569      | 0.0399       | -0.028       | 9.4543    | 20.5342            | 21.4012   | Log10Ki = 0.2363 -0.0569xDB4B6 +0.0399xDB9B10 -0.0280xDB4B2        | 10GX          |
| 696        | 0.9999  | 5          | -1.9586 | 64.9956   | -5.9506      |              |              | 11.2504   |                    |           | Log10Ki = 64.9956 -5.9506xDB4B11                                   | 103G          |
| SPD        | 0.9987  | 4          | -1.8447 | -21.0504  | 0.454        | 0.3118       |              | 16.0778   | 37.9678            |           | Log10Ki = -21.0504 +0.4540xDB22B21 +0.3118xDB10B13                 | <u>3TTN</u>   |
| OLA        | 0.9168  | 5          | -2.0706 | 4.1765    | -0.2753      | 10.000       |              | 23.8531   |                    |           | Log10Ki = 4.1765 -0.2753xD88B12                                    | 1GNI          |
| DH1        | 0.9943  | 3          | -2.0809 | 858.7727  | -63.305      | -16.0171     | 0.6407       | 11.7941   | 7.13               | 22 6400   | Log10KI = 858.7727 -63.3050XDB4B14 -16.0171xDB17B6                 | SEST          |
| CDZ        | 0.99999 | 3          | -0.0762 | 10.0629   | -4.2389      | -0.7061      | -0.6427      | 11.0811   | 19.0397            | ∠0.0406   | Log 1914 - 70.0028 -4.2008XDD11D20 -0.7001XDB11B9 -0.0427XDB20B3   | <u>LAKAT</u>  |

| RIP        | 0.9999  | 4    | -1.3979 | 228.4421             | -8.1134  | -2.115   |          | 19.9651 | 32,0941        | Log10K9 = 228.4421 -8.1134xD811816 -2.1150xD817815 10                                                                                  | DRJ        |
|------------|---------|------|---------|----------------------|----------|----------|----------|---------|----------------|----------------------------------------------------------------------------------------------------------------------------------------|------------|
| GTP        | 0.5797  | 7    | -1.4202 | 7.6062               | -0.5349  | -0.273   |          | 6.4069  | 15.6473        | Log10Ki = 7.6062 -0.5349xDB5B3 -0.2730xDB5B2                                                                                           | NR.        |
| NDZ        | 1       | 3    | -2.1135 | -47.5126             | 4.8539   | 0.1623   | 0.1349   | 8 8828  | 10.4456        | 4.3551 Log10Ki = -47.5126 +4.8539xD82585 +0.1623xD81884 +0.1349xD81885                                                                 | EV2        |
| IM1        | 0.9743  | 4    | -1.7447 | 7.7372               | -0.9078  | 0.1856   | -0.047   | 10.8008 | 6.1964         | 15.1234 Log10Ki = 7.7372 -0.9078xD8382 +0.1856xD8281 -0.0470xD8381                                                                     | SBG        |
| FOL        | 0.9989  |      | -2.5666 | 8.1283               | -0.3132  | -0.2407  | 0.0695   | 19,2179 | 12,4394        | Log104 = 8.1283 -0.3132XD81181 -0.2407XD817813                                                                                         | A BIO      |
| ¥27        | 0.9903  | 2    | 0.7782  | 0.6864               | 0.0522   | -0.1067  | 0.0000   | 17 3127 | 22 1126        | I without BR64 +0.0523/ #0.2617XD60612 -0.1067XD67610 #0.0603XD63611                                                                   | GNI        |
| BAM        | 0.9947  | 4    | 1.3222  | -2.7323              | 0.2097   | 0.0198   | -0.0074  | 18,7189 | 10.1388        | 11.9245 Log10Ki = -2.7323 +0.2097xDB8B13 +0.0195xDB16B22 -0.0074xDB10B14 10                                                            | CSP        |
| ORO        | 0.9614  | 5    | 0.8808  | -447.9466            | 13.232   | 10.337   |          | 16.4095 | 22.433         | Log104 = -447.9466 +13.2320xD812822 +10.3370xD816829                                                                                   | QVD        |
| FID        | 0.9787  | 6    | -2.1871 | -40.3671             | 2.2801   | 1.151    | 1.0888   | 6.9808  | 8.0825         | 11.948 Log1040 = -40.3671 +2.2801xD827831 +1.1510xD815831 +1.0888xD81283122                                                            | PEH        |
| MVL.       | 0.9996  | 4    | -1.3279 | -5.8051              | 0.2894   | 0.2359   | -0.1683  | 12,3931 | 30.2917        | 37.0206 Log10K = -5.8051 +0.2894xD861856 +0.2359xD87812 -0.1683xD8681                                                                  | AYO        |
| UDE        | 0.933   | 4    | -1.699  | 63.6622              | -2.8875  | 0.1737   | 0.0839   | 24.3273 | 19.7613        | 16.7312 Log10K9 = 63.6622 -2.8875xDB9B8 +0.1737xDB4B2 +0.0839xDB4B3                                                                    | GNO        |
| G6D        | 0.9996  |      | -1.8447 | -28.5267             | 0.8376   | 0.3779   | 0.3185   | 19.707  | 16.6929        | 12.19 Log10KI = <25.5267 +0.8376xDB26829 +0.3779xDB49B42 +0.3185xDB9B33 3                                                              | DLG        |
| HCM        | 0.9019  | 9.   | 2 7696  | -0.4900              | 4 8492   | 0.1007   | 0.1302   | 10.4009 | 19.7119        | 113431 L0010N = -0.4940 +0.19/4XU0300 +0.103/XU03011 +0.136/XU03011 20                                                                 | OFT        |
| 132        | 0.9995  | 3    | -2.0458 | -6.6077              | 0.3242   | -0.2922  | 0.2008   | 22.4075 | 23.1159        | 20 2495 Log10K) = -6 6077 +0.3242xDB19B18 -0.2922xDB10B22 +0.2008xDB18B11 10                                                           | GJ7        |
| DMP        | 0.9952  | 4    | -3.4685 | 12.462               | 2.0983   | -0.861   | -0.7565  | 5.4394  | 15.1414        | 18.9738 Log10K = 12.4620 +2.0983xD8382 -0.9610xD8388 -0.7565xD8583                                                                     | QBS        |
| PPF        | 1       | 4    | -0.699  | 30.0763              | -0.5217  | -0.3649  | -0.224   | 31,2316 | 32,5636        | 11.5957 Log10K9 = 30.0763 -0.5217xDB11814 -0.3649xDB19811 -0.2240xDB14820                                                              | NKI        |
| BRN        | 1       | 5    | -1,8861 | 15.8125              | -0.8616  | 0.2443   | -0.1185  | 23.1678 | 15.8309        | 13.5509 Log10K = 15.8125 -0.8616xD826825 +0.2443xD815822 -0.1185xD84831                                                                | HIG        |
| ARA.       | 1       | 3    | -0.8539 | -49.3456             | 1.8834   | 1.3669   | 0.9318   | 14.5197 | 11.3123        | 6.0995 Log10K0 = -49.3456 +1.8834xDB15B25 +1.3669xDB12B21 +0.9318xDB15B21                                                              | BAP        |
| OFF        | 0.0000  | 3    | 0.7243  | 10.4224              | -0.9955  | 0.1046   |          | 9.7355  | 22 7024        | Log10R = 10.4224 -0.9956xDB11B1 4                                                                                                      | LIK        |
| GDM        | 0.9999  | - 2  | 0.1038  | 50.6054              | -5 2908  | -0.1045  |          | 8 5766  | 6.061          | Lost06 = 50 6054 -5 2008/0817812 -0 8459/0811816                                                                                       | MEO        |
| STR        | 1       | 3    | -0.1549 | 8 1463               | -0.255   | -0.0994  |          | 21.8654 | 27.4598        | Log10Kj = 8 1463 -0 2550xD819817 -0 0994xD85816 24                                                                                     | ABA        |
| .314       | 0.9996  | 4    | -1.2823 | -74.5288             | 6.9794   | -3.0512  | 2.8119   | 9.1526  | 14.8967        | 19.5014 Log10ki = -74.5288 +6.9794xD85835 -3.0512xD817834 +2.8119xD815827                                                              | MS.        |
| IMN        | 0.9912  | 4    | 0.4771  | -6.0404              | 0.3014   | 0.1918   |          | 12.4511 | 14.8672        | Log10Ki = -6.0404 +0.3014x08386 +0.1918x08483                                                                                          | HIX.       |
| LDT        | 0.963   | 7    | -1.6596 | -28.2004             | 3.0533   |          |          | 8.7794  |                | Log10K9 × -28.2004 +3.0533xDB20B5                                                                                                      | LBQ        |
| FA1        | 0.9999  | 3    | 1,4771  | 6.0876               | -0.5204  |          |          | 8.8592  |                | Log10K9 = 6.0876 -0.5204xD8489                                                                                                         | 301        |
| EAA        | 0.9992  | 3    | 0.1761  | -6.6923              | 0.3123   | 0.2082   |          | 14.3732 | 11.5006        | Log10R = -6.6923 +0.31230067612 +0.2062005367                                                                                          | 355        |
| BGB        | 0.9344  | 3    | 1.0408  | -10.8347             | 0.9903   | -3.6374  | 0.0057   | 23.6704 | 12.2043        | E00104 = -10.9347 +4.9003L00834 -3.03748053951 1P                                                                                      | BXC        |
| G52        | 0.8636  | 6    | -5.2291 | -48.4638             | 2.049    | -0.209   | -0.1653  | 25 3054 | 27,2192        | 14 71 Loc10K = -48 4638 +2 0490xD8286 -0 2090xD8582 -0 1653xD8587                                                                      | OK9        |
| XMP        | 1       | 3    | -0.9208 | -2.8927              | 0.1503   |          |          | 13.1227 |                | Log10K) = -2.8927 +0.1503xD89B36                                                                                                       | PKX        |
| BCD        | 0.9642  | 3    | -0.1549 | 1,2398               | -0.0966  | 0.0658   | -0.0297  | 22.2801 | 17.1965        | 13.8847 Log10Ki = 1.2398 -0.0956xD8281 +0.0688xD8583 -0.0297xD8584 2                                                                   | Y4S        |
| IFM        | 0.9877  | 5    | -1.7212 | -11.3913             | 0.5289   | 0.2385   | -0.1467  | 14.7867 | 17.336         | 15.755 Log10K = -11.3913 +0.5289xD822852 +0.2385xD823814 -0.1467xD837813 10                                                            | OF         |
| SAL        | 0.9648  | 5    | -1.0458 | -1.2924              | 0.5526   | -0.3793  |          | 13.5166 | 19.2312        | Log109 = -1.2924 +0.5526xD812B13 -0.3793xD87B14 11                                                                                     | 17         |
| JID        | 0.9876  | 5    | -2.2757 | -93.4725             | 14,6033  |          |          | 6.2554  |                | Log10K9 = -93.4725 +14.6033xD82582                                                                                                     | MT         |
| FOT        | 0.0000  | 3    | -3.60/6 | -49.1402             | 6.4162   | 1.8346   | 0.076    | 0.1261  | 6.8667         | Log10N = 49.1452 +6.4162/DB5B15 +1.5346/DB4B10 22                                                                                      | TYY        |
| ASP        | 0.9999  | 3    | 0.699   | -28.0400             | 0.4/51   | 0.1435   | 0.0825   | 6.6502  | 19.0518        | 9 1708 Log10K = -26.6406 F0.47510.05067 F0.4260.05051 F0.3760.05057                                                                    | ODE        |
| UMP        | 0.6736  | 11   | -1.3979 | 3,7889               | -0.2404  | -0.1341  | N. M9407 | 13.1007 | 14,2961        | Loc104 = 3.7889 -0.2404xDB386 -0.1341xDB382                                                                                            | TSD        |
| ESI        | 0.9946  | 4    | -0.6778 | 44.0495              | -3.8918  |          |          | 11.4727 |                | Log10K9 = 44.0495 -3.8918xD84817                                                                                                       | C5X        |
| BAB        | 1       | 3    | -1.6383 | 0.3821               | -0.888   | 0.3693   | -0.1108  | 8.1967  | 17.9374        | 12.324 Log10K9 = 0.3821 -0.8880xD819822 +0.3693xD84820 -0.1108xD8881                                                                   | CIV        |
| IPT        | 0.9538  | 7    | 1.1761  | -18.4746             | -6.5526  | 5.5698   |          | 15.9845 | 22.3566        | Log109 = -18.4745 -6.5526xD852815 +5.5698xD82282                                                                                       | VD4        |
| NGT        | 0.6799  | 8    | -1.2218 | 12.471               | -0.2091  | -0.173   | -0.1688  | 30.3147 | 25.014         | 18.9604 Log10Kg = 12.4710 -0.2091xDB11B16 -0.1730xDB7B16 -0.1688xDB17B16 2                                                             | EPN        |
| 18/        | 0.99999 | 3    | -1.2441 | -2.0173              | 0.6977   | -0.1374  |          | 6.8932  | 29.3716        | Log10R = -2.0173 +0.6977XDB987 -0.1374XDB8822 14                                                                                       | 374        |
| ASP        | 0.6215  | 6    | -1 3079 | -0.0143              | 0.216    | 0 1627   | 0 1598   | 13 0745 | 23.3276        | 21.6481 Lost00 = .0.9143 a0 2160x08886 a0 1627x08681 a0 1698x08881 24                                                                  | A21        |
| SPH        | 1       | 3    | -0.699  | -0.7879              | -0.0198  | 0.0196   | -0.0065  | 11.0436 | 20.489         | 14.5936 Loc10/6 = -0.7879 -0.0198xD8482 +0.0196xD812814 -0.0065xD84816 25                                                              | EVI        |
| 6PG        | 1       | 3    | 0.301   | 60.8744              | -2.7945  |          |          | 21.6759 | and the second | Log10K) = 60.8744 -2.7945xDB15B36                                                                                                      | PGP        |
| 2GP        | 0.648   | 7    | 0.8129  | -8.5269              | 0.343    | 0.2672   |          | 18.7386 | 13.0632        | Log10Ki = -8.5269 +0.3430xD8886 +0.2672xD8386 15                                                                                       | RNT        |
| G3P        | 0.9999  | 3    | -0.1675 | 23.3239              | -1.1004  | -0.2105  | 0.1396   | 20.0147 | 18.8917        | 17.9534 Log10K = 23.3239 -1 1004xD82688 -0.2105xD819821 +0.1398xD82785                                                                 | ACM.       |
| AZM        | 0.9199  | 9    | -2.699  | -1.148               | 0.1873   | -0.1624  | 0120120  | 8.9922  | 16.8115        | Log10% = -1.1480 +0.1873xD8487 -0.1624xD8987 22                                                                                        | HAN        |
| OX2        | 0,4975  | - 20 | -0.3152 | -19.9077             | 2.1386   | -0.9365  | -0.1945  | 16.6771 | 10,7836        | 31.7537 Log10K = -19.9077 +2.1386xDB15838 -0.9365xDB3086 -0.1945xDB6836 1                                                              | M3J        |
| SSP        | U.SU/   | 3    | -4.6383 | +17.4112<br>224.0436 | -11 203  | -0.4612  |          | 11.0802 | 13,0941        | Log100 = -17.4112 +2.317 /AUB1252 -0.4612AUB052 11                                                                                     | OFC        |
| TNF        | 1       | 3    | -1.1549 | 16.9305              | -0.3825  | -0.2214  |          | 31.6722 | 26.9687        | Log109 = 16.9305 -0.3825xD82682 -0.2214xD8582                                                                                          | VYP        |
| CSF        | 1       | 4    | 1.0086  | 1.288                | -0.2756  | 0.2267   | 0.224    | 11.7823 | 9.1453         | 3 9782 Log10Ki = 1 2880 -0 2756xDB20B5 +0 2267xDB20B28 +0 2240xDB18B20                                                                 | HK         |
| ZEN        | 0.9958  | 4    | -0.1871 | 79.6927              | -2.4772  | -2.2637  | -2.2417  | 6.0459  | 21.7012        | 7.0453 Log10K) = 79.6927 -2.4772xDB3B21 -2.2637xDB3B15 -2.2417xDB3B13                                                                  | V2K        |
| 13P        | 1       | 3    | 0       | -0.6879              | 0.0473   | 0.0342   |          | 10.8472 | 5.1038         | Log10Ki = -0.6879 +0.0473xD82088 +0.0342xD819828                                                                                       | ADO        |
| CTS        | 0.9996  | 4    | 0.3222  | 0.9675               | 0.0964   | -0.0422  | -0.0302  | 17.3929 | 37.0357        | 25.0401 Log10K = 0.9675 +0.0964xD851854 -0.0422xD834839 -0.0302xD834854                                                                | CBU        |
| PLU        | 0.9336  |      | -0.6383 | -22.2692             | 0.5745   | 0.384    | -0.1426  | 29.1788 | 18.0991        | 14.8106 Log10/9 = -22.2692 +0.5745xD82283 +0.3840xD82683 -0.1426xD824833 1                                                             | CP         |
| MTG        | 0.0001  | 3    | -1.3465 | -61.9/31             | 2.6375   | 1.2621   | -0.8321  | 22.0364 | 23.1019        | 32/02/3 L0g104 = -01.9/31 +2/53/50/06/033                                                                                              | ELO        |
| HCI        | 0.9842  | 5    | 1 143   | 3.2416               | 0.1234   | -0.0796  | -0.0759  | 18 6912 | 19 126         | 38 7678 Log10K = 3 2416 +0 1234xDR17841 -0 0796xDR30R24 -0 0759xDR24R35 34                                                             | AYI        |
| GSH        | 0.2311  | 15   | 0.1761  | 9.0028               | -0.3895  | -0.2667  | 0.0675   | 11.2648 | 15.3892        | 5 1123 Log10K = 9.0028 -0.3695xDB2B1 -0.2667xDB3B2 +0.0675xDB3B1                                                                       | OSS .      |
| 4CS        | 0.9998  | 3    | -0.7212 | -21.2262             | 0.9255   | 0.3669   |          | 17.8552 | 10 7846        | Log10K9 = -21.2262 +0.9255xDB1984 +0.3669xDB19815                                                                                      | VPN        |
| 388        | 0.9944  | 4    | +1.4949 | 80.8459              | -8.2493  | -3.0646  | -1.5042  | 3.7017  | 14.3106        | 5.2617 Log10Ki = 80.8459 -8.2493xD83082 -3.0646xD816826 -1.5042xD817816                                                                | KI         |
| SU3        | 0.9908  | 4    | -3.1308 | 1438.536             | -80.9505 | -34.1113 | -29.6176 | 11.8702 | 6.6664         | 8.5543 Log10Ki = 1,438.5360 -80.9505xDB12B13 -34.1113xDB19B16 -29.6176xDB5I 35                                                         | SU3        |
| DAN        | 0.6326  | 8    | -0.2596 | -11.4022             | 1.3627   | -0.2145  |          | 12.0739 | 21.694         | Log1090 = -11.4022 +1.3627xD84812 -0.2145xD87810                                                                                       | 100        |
| G15        | 0.6677  |      | -0.6383 | -15.20/5             | 0.4911   | 0.4491   | -0.4415  | 31.1/05 | 17.5361        | 19:5197 L0g10/9 = -15:2075 +0.4911xD815835 +0.4491xD812832 -0.4418xD8488 3                                                             | 0000       |
| NDG        | 0.06/7  | 5    | -1.0605 | 9 4134               | -0.3532  | -0.2717  |          | 10.9145 | 13 268         | Log100 = 9.4134 -0.3632yD8481 -0.2717yD8381                                                                                            | DXG        |
| NOJ        | 0.8918  | 7    | 0.3802  | 2,7642               | -0.1609  | 0.0584   | -0.0543  | 11.9664 | 20.2744        | 28.6617 Log10K9 = 2.7642 -0.1609xD811828 +0.0584xD82786 -0.0543xD833838 4                                                              | ID         |
| AMQ        | 1       | 4    | -1.6421 | 728.247              | -38.3255 | -1.5904  |          | 18.5481 | 11.9507        | Log10K = 728 2470 -38.3255xD8382 -1 5904xD82184                                                                                        | FAT        |
| TCL        | 0.3952  | 7    | -4.6576 | 1.3276               | -0.3458  | 0.2591   | 0.0706   | 24,5079 | 9.2401         | 26.3977 Log10Ki = 1.3276 -0.3458xDB3B2 +0.2591xDB2B1 +0.0706xDB3B1                                                                     | QG6        |
| M6P        | 1       | 3    | -3      | 16.3753              | -1.0791  | -0.5231  |          | 8.8133  | 18.8549        | Log10KI = 16.3753 -1.0791xD8482 -0.5231xD81982 15                                                                                      | 520        |
| TSV        | 0.9966  | 3    | -1.3487 | 107.0495             | -4.8805  | -4.0816  | -2.8246  | 6.9745  | 10.0206        | 11.8464 Log10iG = 107.0495 -4.8805xD8881 -4.0816xD82813 -2.8246xD87810 35                                                              | <u>SU2</u> |
| ABH        | 0.8724  | 7    | -2.301  | 33.8144              | -1:2977  | -0.9917  | -0.6386  | 9.7252  | 11.4565        | 18.6709 Log10/6 = 33.8144 -1.2977xD821820 -0.9917xD814820 -0.6386xD82083 24                                                            | AEB        |
| LIDE       | 0.9911  |      | -1.4400 | 7.6304               | 3 1200   | -0.6017  |          | 7 4374  | 6.2500/1       | Log10N = -05.333/ 40.1208/02/06 -0.6517X06067 20                                                                                       | GAR        |
| IFL        | 0.99999 | 4    | -1.0044 | 6 1331               | -0.5835  | 0.2239   |          | 25.7675 | 35.3452        | Log10K = 6 1331-0.5835xDB4B38+0.2239xDB38812 44                                                                                        | AYR        |
| MCO        | 0.9955  | 4    | 1.301   | 2.0501               | -0.1484  | 0.075    |          | 13.206  | 16.0839        | Log1099 = 2.0501 -0.1484xD81988 +0.0750xD81789 25                                                                                      | FUB        |
| SRO        | 0.5914  | 7    | -2.699  | -13.7408             | 0.8144   |          |          | 13.7632 |                | Log10K9 = -13.7408 +0.8144xDB2B1 38                                                                                                    | BRN        |
| 1F1        | 0.9909  | 3    | 0.6128  | 3.6323               | -0.3227  | 0.0476   | -0.0458  | 8.1739  | 4.7244         | 12:547 Log10Ki = 3.6323 -0.3227xD811B10 +0.0476xD811B1 -0.0458xD87B10                                                                  | <u>813</u> |
| ACP        | 0.9995  | 3    | 2       | -182.0316            | 5.4556   | 1.0061   | 0.3154   | 29.0316 | 13.5309        | 38.1632 Log10Ki = -182 0316 +5.4556xD82889 +1.0061xD82583 +0.3154xD811820 34                                                           | AIC        |
| ADC        | 0.0007  | 3    | -1.699  | -0.6455              | 0.6961   | -0.3356  | -0.2625  | 13,7543 | 19.8636        | 15 U/6 Log109 = -0.6455 +0.6961xD63814 -0.3356xD6487 -0.2625xD62820                                                                    | IMK        |
| MELL       | 0.9363  | 4    | -0.0383 | -50 5032             | 3 19 19  | 1.6051   | 1 204    | 7 4892  | 5,4205         | 14 71 Los106 = 50 5032 +3 1919/DB589 +1 6551/DB281 +1 2040/DB487                                                                       | ID11       |
| 1UN        | 0.8455  | 9    | -4 1549 | -8.9168              | 0.3887   | 0 1554   | 1.204    | 5 3594  | 19 2973        | Log10K = -8.9168 +0.3887xD8881 +0.1554xD9487                                                                                           | OFA        |
| Q13        | 1       | 3    | -1.4318 | +4.644               | 0.3439   | -0.1191  | -0.0764  | 22 0903 | 10.4642        | 41.09 Log10K9 = -4.6440 +0.3439xD819817 -0.1191xD8588 -0.0764xD819826 4x                                                               | CG         |
| 470        | 0.9953  |      | -1.4408 | -83 3687             | 2 693    | 1,3873   |          | 22 1781 | 15 9619        | Log10K) = -83 3687 +2 6930xD82684 +1 3873xD82784 204                                                                                   | DG         |
| ROC        | 0.388   | 9    | -3.9208 | 55,2735              | -7.3935  | -3.9601  | 2.8162   | 4.7982  | 11.8608        | 8.6421 Log10K = 55.2735 -7.3935xD8581 -3.9601xD8489 +2.8162xD8981 1H0                                                                  | OKB.       |
| XV6        | 0.9742  | 4    | -4.5686 | -13.8657             | 1.2604   | -0.235   | Second   | 13.5182 | 32.5792        | Log10Ki = -13.8657 +1.2604xD8286 -0.2350xD8387 10                                                                                      | BR         |
| 3EF        | 1       | 3    | -3.3872 | 18.4278              | -0.5312  | -0.176   |          | 30.5311 | 31.8061        | Log10Ki = 18.4278 -0.5312xD813842 -0.1760xD85856 400                                                                                   | A5         |
| DIH        | 0.941   | 5    | -3.5686 | 35,2145              | -0.9237  | -0.8418  |          | 20.1404 | 24.0117        | Log10K9 = 35,2145 -0.9237xD819814 -0.8418xD81488 244                                                                                   | QW.        |
| MIM        | 1       | 3    | -4.1135 | -53.1525             | 1.3185   | 0.7018   |          | 23.6213 | 25.5054        | Log10Ki = -53.1525 +1.3185xD816813 +0.7018xD815816                                                                                     | 111        |
| SES<br>ECA | 1       | 3    | -3.3872 | 18.105               | -4,6174  | 0.672    | 2,0004   | 15 7344 | £ 00007        | Log 10Ki = 15 1050 -4 51/4X0524555 +0.6/20X05255847 2X0<br>7 7372 1 on 10Ki = 41 9146 -2 9072VD8881 -2 4473-064780 -2 0804-0648522 744 | TH         |
| GNP        | 0.9994  | 3    | -2 6383 | 3 9919               | 0.2767   | -0.2746  | -0 1385  | 6.5737  | 19 6650        | 21.7717 Log10K = 3.9919 +0.2767yD85R2.0.2748yD81086.0.1385yD82386 (5)                                                                  | VS         |
| QJ8        | 1       | 3    | -1      | 2,9335               | -0.2448  | -0.159   | 0.0924   | 16.0838 | 14.4431        | 24.8966 Log 10K9 = 2.9335 -0.2448xD827837 -0.1590xD826824 +0.0924xD814835 411                                                          | UX         |
|            |         |      |         |                      |          |          |          |         |                | 03                                                                                                                                     | -          |



Table 10. Limitation of the method presented using Median of R<sup>2</sup> vs number of structures

This graph is a disclosure of the limitation of this tool, since we want to provide transparency of the system. We offer the reader this insight, so that it will allow other researchers to consider whether they can improve the method further, by adjusting input atoms and making a careful distance and binding affinity measurements. Our default setting of only heteroatoms selected suggests that the method can be generalized. There is a clue from  $R^2$  statistics in this  ${\tt Table\,9}$  that the distance and its influence on Ki can be seen in various superposition settings, as shown by the agreement of the majority distance data sets, filtered by the same procedure (median  $R^2$ 0.996 and mean R<sup>2</sup> 0.908). If the user can provide more superimposable atoms as input, most of the low R<sup>2</sup> values can be increased. Although, our results still have a limited number of data points, they have potential to be used as a guideline for similar studies and for use as a baseline for other researchers. More carefully conducted data from a series of crystal structures with corresponding binding affinities, will provide good quality data points and better prediction accuracy, facilitated by MANORAA algorithms.

## **Results & Discussion**

# 1. Conserved parts of protein-ligand complexes

In terms of drug design based on the lock and key concept, the web server can dissect the protein surrounding the ligand into regions of similarity and difference. The similarity data, based on frequently occurring atoms and residues, can be collected from the grid-based superposition of a large number of protein structures in the same homologous family. These grid-based superpositions of the user-selected PDB codes provide information on which parts of the protein are conserved and required for ligand design. These conserved parts act as a pivot point to interpolate to the part of the ligand fragment that should be maintained inside the core of the structure. This process can be automated by programming to superimpose numerous proteins that bind to a similar ligand, especially on the user-provided rigid fragments. The parts that always retain the same information for both type and position can be binned using a grid box. The outcomes are displayed in a series of gradient colors from blue to yellow, based on the frequency of entities that are populated inside the grid box (Figure 2 & Figure 3).



Figure 2. Structural conservation represented as a gradient in color from yellow to green to blue to visualize the occurrence of conserved residues.



Figure 3. Density display of the distinctive parts of conserved residues that frequently occur. After normalization, they are used for creating the gradient-color pictures (left). All the distances plotted between conserved atom pairs in the bin are then filtered and included in the protein-ligand distance binding affinities correlation model (right).

Superposition of protein-ligand complex structures based on the ligand's rigid parts revealed certain protein atoms that retain their positions in more than 75% of the cases for the kinase and for the dihydrofolate reductase data sets. Those positionally conserved entities in the pocket can be used as reference points to guide where atoms inside the pocket should retain their positions during synthesis. Since these points represent atoms that remain in the same position in the majority of the structures, they are likely to have preferable molecular interactions with the ligand and be well preserved. These frequently occurring entities are illustrated for protein kinase (Figure 2 & Figure 3) and dihydrofolate reductase.

This phenomenon is observed in several sets of proteins, such as the folate binding residue in dihydrofolate reductases and the hinge region in kinases, as in the sample data by selecting the "Structural Conservation" button from URLs

http://manoraa.icbs.mahidol.ac.th/Manoraa/ligand/MTX and http://manoraa.icbs.mahidol.ac.th/Manoraa/ligand/STU respectively. The last three letters of these URLs can be replaced by any ligand's PDB 3-letter codes that are available in CREDO (Schreyer & Blundell, 2013).

#### 2. Variation parts that related to binding affinity values

Another aspect that relates to the binding constant, which tells how the drugs can be improved for efficiency, is based on correlation between the inter-residue distances and the binding affinities. We observed that distinctive parts of the amino acid residues, mostly at the penultimate atoms (Tanramluk *et al.*, 2009) can be used as points for distance measurement, which can be used to train Partial Least Squares algorithms. This can result in model equations that describe the relationship between binding affinities and distances with high accuracy (mean  $R^2 > 0.9$ ). We also show in detail that these distances can be used to improve the value of binding affinities of *Staphylococcus aureus* DHFR (Dale *et al*, 1993) with trimethoprim. The obtained binding affinity equation for  $K_{i,TOP}$  when setting rigid fragment atoms at pyrimidine-2,4-diamine ring and the linker can be found in Table 8.

The model equation generated from clicking "Binding-Distance

Correlation" button of

http://manoraa.icbs.mahidol.ac.th/Manoraa/ligand/TOP is:

 $Log_{10}K_{i,TOP} = 31.394 - 4.2142 \times D_{(Leu5,Ala7)}$  (Equation 1)

in S. aureus DHFR

Reverse engineering the distance of the amino acids inside the protein *S. aureus* DHFR by site-directed mutagenesis suggest that binding affinities  $(K_{i,TOP})$  can be improved from  $6.2 \pm 0.62$  nM to  $3.5 \pm 0.92$  nM by mutating from leucine to valine (L5V) to expand the pocket in the direction that is proportional to the largest coefficient by deducting the size of amino acid (Figure 4, Figure 5, Table 7).



Figure 4. The orange bar is drawn between SaDHFR's residues Leu5 and Ala7, which is the favorable expansion distance based on the coefficient of the independent variables in Equation 1 that results in a lower  $K_{i,TOP}$  for SaDHFR (proved in Table 8).



Figure 5. Bar graph representing  $K_{i,TOP}$  of wild-type (WT) and mutant *Sa*DHFR (L5V, L5M, A7S, A7G). The x-axis is the type of mutation and the y-axis is the  $K_i$  value of trimethoprim ( $K_i$ , TOP). The data are presented as mean ± standard error of the mean (n = 3). The L5V mutation suggested by (Equation 1) can improve the *Sa*DHFR binding affinity to trimethoprim by 2-fold (Table 8).

The blind test with X-ray crystal structure of K1 *Plasmodial falciparum* dihydrofolate reductase-thymidylate synthase (*Pf*DHFR-TS) in complex with trimethoprim (TOP) (PDB ID: 7F3Z) results in  $Ki_{,TOP}$  prediction of 1.45 nM while the experimental  $Ki_{,TOP}$  was 3.62 nM (Table 2). Therefore, this distance in crystal structure results in acceptable prediction of trimethoprim binding affinity (Figure 6, plotted using data from Table 3).



Figure 6. Predictive power of the influential distance equation for *Ki*, TOP in complex with K1 mutant of *Pf*DHFR-TS (red circle, Table 2 and Table 3).

Although not all the *S. aureus* DHFR mutated residues conform to the equation, the results showed that our algorithm could indicate, at least once, how the binding affinity can be computationally improved by two-fold (Figure 5), which was subsequently confirmed by kinetics studies of purified *S. aureus* DHFR (Dale *et al.*, 1993; Thampradid, 2016).

We also validated the distance from crystallographic studies of wild-type *Plasmodium falciparum* dihydrofolate reductase-thymidylate synthase (*Pf*DHFR-TS) (Yuvaniyama *et al.*, 2003) with methotrexate (MTX) to see how the generated model built from Partial Least Squares regression (PLS) of influential distances from 13 DHFR structures can predict  $K_i$  in a novel protein-ligand complex structure (Table 5).

The model equation was

 $Log_{10}Ki_{,MTX} = 8.2741 - 2.6172 \times D_{(Glu30,Thr136)}$  (Equation 2)

in Human DHFR or equivalent in other species.

The solved X-ray structure of *Pf*DHFR-TS in complex with MTX was used to blind test the influential distance obtained from the structure and put back into the equation (PDB ID: 7F3Y). The predicted binding affinity values calculated from distance (4.314 Å) between Asp54 and Thr185 in X-ray structure of *Pf*DHFR-MTX complex with the MANORAA's equation was 0.96 nM while the  $K_{i,MTX}$  of *Pf*DHFR-TS from kinetic experiments was 0.20 ± 0.03 nM (Table 5). If the DHFR data from mouse are excluded, the trend of the binding affinity from prediction using influential distances in crystal structure of *Pf*DHFR-TS MTX corresponds well with the experimental data, as can be seen in red circle located on the trend line (Figure 7, plotted using data from Table 6).



Figure 7. Predictive power of the influential distance equation to calculate  $K_{i,MTX}$  in TM4 *Pf*DHFR-TS (red circle, Table 5 & Table 6). The x-axis is the experimental binding affinity value and the y-axis is the predicted binding affinity value calculated by influential distances. The dataset used for training contained influential distances calculated from the  $K_{i,MTX}$  of *E. coli* DHFRs, shown as purple squares; human DHFRs, shown as blue diamonds; and all other bacterial DHFRs, shown as triangles. The distance between Asp54 and Thr185 in *Pf*DHFR-TS X-ray structures in complex with methotrexate has shown the power of the prediction of the model. The mouse DHFR, an orange diamond, is an outlier.

The inaccuracy comes from the heterogeneity of data from wet lab, the flexibility of these molecules (both TOP and MTX) which affects the superposition and hence the binning of the atomic environments. Also, there is a difference in the conformation of MTX molecules in *Pf*DHFR-TS from other methotrexate complexes in the 13 input DHFR from various species that were used to train the model. This MTX conformation (PDB: 7F3Y) is found in parasitic DHFR-TS structures, such as DHFR from *C. hominis* and *T. gondii* DHFR (unpublished), except for *Trypanosoma cruzi* DHFR. The trimethoprim molecule is known to adopt upward conformation in eukaryotes and downward conformation in bacterial and fungal DHFR (Matthews *et al*, 1985). This trimethoprim in *Pf*-DHFR-TS

adopted the downward conformation (PDB: 7F3Z) and shows acceptable predictive power of influential distance equation (Figure 6). By increasing the number of atoms of MTX and TOP along the core of the structure for superposition, the models can be improved by using our web interface. However, the obtained distances will be changed from the initial data set which use heteroatoms by default because they are obtained from binning another set of atoms used for superposition. The predictive models are obtained from the set of superposed atoms that give more numbers of conservation and results in one distance, and not necessary the ones with the highest R<sup>2</sup> values. See X-ray data collection in Table 1 and the MTX binding affinity calculation in Table 4, which results in Table 5 & Table 6 and Figure 7

## 3. Protein-ligand interaction analysis

This function can be used to observe protein and chemical fragment interaction. We found that the number and the type of atoms affect the binding affinities, as well as distances, due to chemical interactions requiring certain interacting atom types. The function calculates the chemical binding of the fragments against all the proteins in the database, where the user can observe a particular atomic interaction by clicking in check boxes of atoms they want to observe. The trend of binding affinities often depends on the number of hydrogen bonds or ionic interactions. Sometimes more interactions are better due to favorable attraction, while other times a smaller number of interactions is better due to the steric interactions. If we know the trend of how many hydrogen bonds should be made, certain hydrogen bonds can be added or removed to control the binding affinities to a desirable positive or negative trend. The trend of numbers of hydrogen bond and binding affinities were based on our previous work on protein kinase interaction with methylamine moieties of staurosporine (Tanramluk *et al.*, 2009) and was also confirmed by another experimental group (Hirozane et al.), who studied 288 pan-kinases for design of fluorescent probe (Hirozane *et al*, 2019).

### 4. Active site boundary

This function is used for defining the active-site boundaries based on the accumulation of ligand atoms as a voluminous structure inside the pocket. The active site boundaries in ligand design used to be obtained from rolling a sphere on the van der Waals surface of the protein active site, until the development of more recent grid-volumetric based methods and others (Ehrt *et al*, 2018). In this study, we used each of the ligand atoms as a probe to detect the parts of the pocket that are accessible by foreign non-protein atoms. The grid boxes are used for summing up ligand atoms in each location by binning atoms; this will intensify the signal-to-noise ratio of each atom type compared with the background. Cutoff numbers were applied so that atoms that always stay in certain locations more often than the cutoff value should show up at higher cutoff than the others (Figure 8, Supplemental Video).

By this method, we may re-engineer the imaginary ligand inside the pocket of the protein by observing various species of the main protease and including those of the recent Coronavirus protease structures from the Diamond Light Source website. Superposition of SARS-CoV-2 main protease structures harbouring covalent, non-covalent, or other small fragments (The Diamond Light Source, 2020) allows us to see the summation of all the fragments dissected into various frequently occurring atom locations.



Figure 8. Main protease showing frequently occurring atoms in green, with size depending on the frequency found (Supplemental Video). The map shows which atoms of the ligand, out of hundreds of structures, retain their location more than other random ligand atoms, using the size of the spheres to indicate frequency. In this way, drug researchers can infer which atoms of the drug to retain.

This information is available on the URL <u>http://mprocovid.com</u>, which is an example of how we use the MANORAA system's programmable URL as a backend for identifying the most important atoms for drug design.

## 5. Empirical studies of influential distances equations

Similar methods to the previously mentioned Variation Parts were applied to all the ligands with binding affinity values available with more than 3 structures in the PDB, with each set having default input as all heteroatoms for superposition. Partial Least Squares methods were used to learn the distances inside the pockets. All the most important distance descriptors obtained were called influential distances. From 180 ligand-protein structures with available binding affinity values, distances were drawn on the structures with available URL for viewing the directions obtained from

the equation on the 180 template PDB files in the last column (Table 9). This algorithm can empirically relate the frequently occurring entities inside the protein with the binding affinity, as shown by the mean  $R^2$  equals to 0.908. Noted that when structures in the data set are larger, the R<sup>2</sup> may be lower because distances and Ki are separately obtained by laboratories from various settings around the world. We map these distances to find the physical meaning and observe by eye-inspection. There is an observable trend of the binding affinity data prediction based on these equations and they can be estimated by using the logarithm of  $K_i$  or  $K_d$  and excluding all the other types of activity such as  $IC_{50}$  (the half maximal inhibitory concentration). In this way, although the values vary due to slight technical differences, the binding affinities that have the same magnitude should be located near one another in the trend line. We hypothesized that the interatomic distance equation obtained can relate to physico-chemical properties ( $K_i$  or  $K_d$ ). Many of these influential distances located parallel to the plane of ligand's aromatic rings. These data are available in tabulated format with a graphical interface to allow visual observation by peers via the URL provided in Table 9.

#### Conclusion

Although, the machine learning algorithm allows for general prediction, there is a need to show why these descriptors are influential and offer ways to be understood and interpreted using the web interface. The bottom line is to have a platform that allows users to overcome the limit of synthesizing knowledge from complex data in conventional publishing styles. This platform offers a customized integration of the biomedical big data for drug design and allows in-depth interpretation of the data. Although, some parts of the database backend rely on CREDO v.2016 and may not be the service

of propriety data from drug company. However, we allow uploading structure, so all can use this platform through the programmable URL, allowing agile queries via the data interface for multiple operating systems. The machine learning service we provide allows for a custom-made fragment superposition and Partial Least Squares regression analysis to explain several protein-ligand complexes providing acceptable values with our experimental confirmation from 3 separated scenarios. Such analyses are now possible for sets of homologous structures in the PDB, as demonstrated for DHFR and protein kinases. We envisioned that the method can be improved so that we can understand how to design multitargeting ligands by introducing preferable distances by adding bioisosteric ligand atoms near the residue used to measure influential distances to show contraction or expansion direction along the protein. Furthermore, promiscuous atoms at each residue obtained from the conservation location can be considered as requirements for binding and hence are often present in off-target proteins. The future goal is to improve the platforms that can be used for both inhibitor design and protein engineering, and to bridge the gap between in-depth scientific calculations and big data (Figure 1).

The in-depth analysis allows web-based analysis of X-ray structure in multiple proteins, which include structural conservation, protein-ligand interaction, and structural variation. By using our service, unusual sideeffects such as cardiac muscle contraction from schizophrenic drug, trifluoperazine; and breast cancer tendency in estradiol hormone can be discovered without waiting for the side-effects to occur in the large population. The side effects can be discovered by linking through proteins causing symptoms, biological pathways and their common baseline expression in specific tissues using our service. Learning how a small molecule interacts with protein based on our influential distance equations can open door for a breakthrough to next generation ligand design. By this way, the system created can be of benefit to the drug design community.

- Adeshina YO, Deeds EJ, Karanicolas J (2020) Machine learning classification can reduce false positives in structure-based virtual screening. *Proceedings of the National Academy of Sciences of the United States of America* 117: 18477-18488
- Benson ML, Smith RD, Khazanov NA, Dimcheff B, Beaver J, Dresslar P, Nerothin J, Carlson HA (2008) Binding MOAD, a high-quality protein–ligand database. *Nucleic acids research* 36: D674-D678
- Carvalho-Silva D, Pierleoni A, Pignatelli M, Ong C, Fumis L, Karamanis N, Carmona M, Faulconbridge A, Hercules A, McAuley E *et al* (2019) Open Targets Platform: new developments and updates two years on. *Nucleic acids research* 47: D1056-d1065
- Chitnumsub P, Yuvaniyama J, Vanichtanankul J, Kamchonwongpaisan S, Walkinshaw Yuthavong Y (2004)Characterization, MD. crystallization and preliminary X-ray analysis of bifunctional dihydrofolate reductase-thymidylate synthase from Plasmodium falciparum. crystallographica Section Acta  $D_{\cdot}$ Biological crystallography 60: 780-783
- Chong I-G, Jun C-H (2005) Performance of some variable selection methods when multicollinearity is present. *Chemometrics and Intelligent Laboratory Systems* 78: 103-112
- D'Souza S, Prema KV, Balaji S (2020) Machine learning models for drugtarget interactions: current knowledge and future directions. *Drug Discovery Today* 25: 748-756
- Dale GE, Then RL, Stüber D (1993) Characterization of the gene for chromosomal trimethoprim-sensitive dihydrofolate reductase of Staphylococcus aureus ATCC 25923. *Antimicrobial agents and chemotherapy* 37: 1400-1405
- Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F, Bellis L, Overington JP (2015) ChEMBL web services: streamlining access to drug discovery data and utilities. *Nucleic acids research* 43: W612-620
- Ding X, Zhang B (2021) DeepBAR: A Fast and Exact Method for Binding Free Energy Computation. *The Journal of Physical Chemistry Letters* 12: 2509-2515
- Ehrt C, Brinkjost T, Koch O (2018) A benchmark driven guide to binding site comparison: An exhaustive evaluation using tailor-made data sets (ProSPECCTs). *PLoS computational biology* 14: e1006483

- Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. *Acta crystallographica Section D, Biological crystallography* 66: 486-501
- Frye SV (2010) The art of the chemical probe. *Nature chemical biology* 6: 159-161
- Gong S, Worth C, Cheng TK, Blundell T (2011) Meet Me Halfway: When Genomics Meets Structural Bioinformatics. J of Cardiovasc Trans Res 4: 281-303
- Hillcoat BL, Nixon PF, Blakley RL (1967) Effect of substrate decomposition on the spectrophotometric assay of dihydrofolate reductase. *Analytical biochemistry* 21: 178-189
- Hirozane Y, Toyofuku M, Yogo T, Tanaka Y, Sameshima T, Miyahisa I, Yoshikawa M (2019) Structure-based rational design of staurosporinebased fluorescent probe with broad-ranging kinase affinity for kinase panel application. *Bioorganic & medicinal chemistry letters* 29: 126641
- Hochreiter S, Klambauer G, Rarey M (2018) Machine Learning in Drug Discovery. Journal of Chemical Information and Modeling 58: 1723-1724
- Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, Bhai J *et al* (2021) Ensembl 2021. *Nucleic acids research* 49: D884-d891
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A *et al* (2021) Highly accurate protein structure prediction with AlphaFold. *Nature*
- Kamchonwongpaisan S, Charoensetakul N, Srisuwannaket C, Taweechai S, Rattanajak R, Vanichtanankul J, Vitsupakorn D, Arwon U, Thongpanchang C, Tarnchompoo B *et al* (2020) Flexible diaminodihydrotriazine inhibitors of Plasmodium falciparum dihydrofolate reductase: Binding strengths, modes of binding and their antimalarial activities. *European journal of medicinal chemistry* 195: 112263
- Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic acids research* 28: 27-30
- Kim S, Shoemaker BA, Bolton EE, Bryant SH (2018) Finding Potential Multitarget Ligands Using PubChem. *Methods in molecular biology* (*Clifton, NJ*) 1825: 63-91
- Lavecchia A (2019) Deep learning in drug discovery: opportunities, challenges and future prospects. *Drug Discovery Today* 24: 2017-2032
- Matthews DA, Bolin JT, Burridge JM, Filman DJ, Volz KW, Kraut J (1985) Dihydrofolate reductase. The stereochemistry of inhibitor selectivity. *The Journal of biological chemistry* 260: 392-399

- Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. *Acta crystallographica Section D, Biological crystallography* 67: 355-367
- Nguyen DD, Cang Z, Wu K, Wang M, Cao Y, Wei G-W (2019) Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges. *Journal of Computer-Aided Molecular Design* 33: 71-82
- Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. *Methods in enzymology* 276: 307-326
- Penner MH, Frieden C (1987) Kinetic analysis of the mechanism of Escherichia coli dihydrofolate reductase. *The Journal of biological chemistry* 262: 15908-15914
- Pflugrath J (1999) The finer things in X-ray diffraction data collection. *Acta Crystallographica Section D* 55: 1718-1725
- Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlić A, Rose PW (2018) NGL viewer: web-based molecular graphics for large complexes. *Bioinformatics* 34: 3755-3758
- Schreyer AM, Blundell TL (2013) CREDO: a structural interactomics database for drug discovery. *Database : the journal of biological databases and curation* 2013: bat049
- Tanramluk D, 2005. Analysis of amino acid environments in proteins by statistical approaches, School of Crystallography. Birkbeck College, University of London, p. 60.
- Tanramluk D, Narupiyakul L, Akavipat R, Gong S, Charoensawan V (2016) MANORAA (Mapping Analogous Nuclei Onto Residue And Affinity) for identifying protein–ligand fragment interaction, pathways and SNPs. *Nucleic acids research* 44: W514-W521
- Tanramluk D, Schreyer A, Pitt WR, Blundell TL (2009) On the Origins of Enzyme Inhibitor Selectivity and Promiscuity: A Case Study of Protein Kinase Binding to Staurosporine. *Chemical Biology & Drug Design* 74: 16-24
- Thampradid S, 2016. Kinetic studies of wild-type and mutant *Staphylococcus aureus* dihydrofolate reductase (*Sa*DHFR) for drug discovery., Department of Biochemistry, Faculty of Science. Mahidol University, Thailand.
- The Diamond Light Source (2020) Main protease structure and XChem fragment screen.
- The UniProt Consortium (2020) UniProt: the universal protein knowledgebase in 2021. *Nucleic acids research* 49: D480-D489
- Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A *et al* (2021) Highly accurate protein structure prediction for the human proteome. *Nature*

- Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallographica Section D 66: 22-25
- Vaguine AA, Richelle J, Wodak SJ (1999) SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. *Acta Crystallographica Section D* 55: 191-205
- Vanichtanankul J, Taweechai S, Yuvaniyama J, Vilaivan T, Chitnumsub P, Kamchonwongpaisan S, Yuthavong Y (2011) Trypanosomal dihydrofolate reductase reveals natural antifolate resistance. ACS Chem Biol 6: 905-911
- Velankar S, van Ginkel G, Alhroub Y, Battle GM, Berrisford JM, Conroy MJ, Dana JM, Gore SP, Gutmanas A, Haslam P *et al* (2016) PDBe: improved accessibility of macromolecular structure data from PDB and EMDB. *Nucleic acids research* 44: D385-395
- Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A *et al* (2011) Overview of the CCP4 suite and current developments. *Acta Crystallographica Section D* 67: 235-242
- Workman P, Collins I (2010) Probing the probes: fitness factors for small molecule tools. *Chemistry & biology* 17: 561-577
- Yuvaniyama J, Chitnumsub P, Kamchonwongpaisan S, Vanichtanankul J, Sirawaraporn W, Taylor P, Walkinshaw MD, Yuthavong Y (2003) Insights into antifolate resistance from malarial DHFR-TS structures. *Nature structural biology* 10: 357-365

# Appendix

Supplemental Video about the MANORAA project at Mahidol World (>500 views) <u>https://youtu.be/f9eeXNGJJF0</u>